期刊文献+

对称空间中一类非压缩映象的公共不动点(英文) 被引量:7

Common fixed points for selfmaps without contractive conditions in symmetric spaces
下载PDF
导出
摘要 Hiks和Rhoades在对称空间中建立了公共不动点定理,并证明了概率度量结构包含一个相容对称.通过建立 对称空间中的反交换映射,给出了对称空间中一类非压缩映象的公共不动点定理.作为应用,我们给出了概率度量空 间中的一个新的不动点定理. Hicks and Rhoades established some common fixed point theorems in symmetric spaces and proved that very general probabilistic structures admit a compatible symmetric The purpose of this paper is to give some common fixed points theorems for converse commuting selfmaps in symmetric spaces without contractive conditions. As an application, we obtain a new fixed point theorem in probabilistic spaces.
出处 《西南民族大学学报(自然科学版)》 CAS 2005年第1期13-16,共4页 Journal of Southwest Minzu University(Natural Science Edition)
关键词 公共不动点 对称空间 反交换映射 概率度量空间 common fixed point symmetric space converse commuting selfmap probabilistic space
  • 相关文献

参考文献1

二级参考文献7

  • 1Jungck G. Compatible mappings and common fixed points[J]. Internat J Math Sci, 1986,9:771-779.
  • 2Pant R P. Common fixed points of noncommuting mappings[J]. J Math Anal Appl, 1994,188:436-440.
  • 3Pant R P. R-weak commutativity common fixed points of noncornpatible maps[J]. Ganita, 1998,49:19-27.
  • 4Pant R P. Common fixed point theorems for contractive maps[J]. J Math Anal Appl, 1998,226:251-258.
  • 5PantRP.Note discontinuity and fixed points[J].J Math Anal Appl,1999,240:284-289.
  • 6Pant R P. Note common fixed points of Lipschitz type mapping pairs[J]. J Math Anal Appl, 1999, 240:280-283.
  • 7Sastry K P R. Common fixed points of two partially commuting tangential selfmaps on a metric space [J]. J Math Anal Appl, 2000,250:731-734.

共引文献15

同被引文献48

  • 1胡新启,刘启宽.度量空间中反交换映射的公共不动点[J].数学杂志,2007,27(1):19-22. 被引量:13
  • 2Hicks T L,Rhoades B E.Fixed point theory in symmetric spaces with applications to probabilistic spaces[J].Nonlinear Analysis,1993,36:331-334.
  • 3Pant R P.Common fixed point theorems for contractive maps[J].J.Math.Anal.Appl,1998,226:251-258.
  • 4Asmri M,Moutawakil D E.Common fixed points under contractive conditions in symmetric spaces[J].Applied Mathematics E-notes,2003,3:156-162.
  • 5Asmri M,Moutawakil D E.Some new common fixed points under strict contractive conditions[J].J.Math.Anal.Appl,2002,270:181-188.
  • 6HICKS T L, RHOADES B E. Fixed point theory in symmetric spaces with applicatios to probabilistic spaces[J]. Nonlinear Analysis, 1993,36 :331-334.
  • 7PANT R P. Common fixed point theorems for contractive maps[J]. J Math Anal Appl, 1998,226: 251-258.
  • 8ASMRI M, MOUTAWAKIL D E. Common fixed points under contractive conditions in symmetric spaces [J]. Applied Mathematics E-notes, 2003,3 : 156-162.
  • 9ASMRI M, MOUTAWAKIL D E. Some new common fixed points under strict contractive conditions[J]. J Math Anal Apl, 2002,270 : 181-188.
  • 10HICKS T L,RHOADES B E.Fixed point theory in symmetric spaces with applications to probabilistic spaces[J].Nonlinear Analysis,1993,36:331-334.

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部