期刊文献+

EXACT SOLUTIONS FOR GENERAL VARIABLE-COEFFICIENT KdV EQUATION 被引量:8

EXACT SOLUTIONS FOR GENERAL VARIABLE-COEFFICIENT KdV EQUATION
下载PDF
导出
摘要 By asing the nonclassical method of symmetry reductions, the exact solutions for general variable coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and nonuniformity terms don't exist, the multisoliton solutions are found and the corresponding Painleve II type equation for the variable coefficient KdV equation is given. By asing the nonclassical method of symmetry reductions, the exact solutions for general variable coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and nonuniformity terms don't exist, the multisoliton solutions are found and the corresponding Painleve II type equation for the variable coefficient KdV equation is given.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2001年第4期377-380,共4页 高校应用数学学报(英文版)(B辑)
基金 Supported by the Develop Programme Foundation of the National Basic research(G1 9990 3 2 80 1 )
关键词 General variable coefficient KdV equation nonclassical method of symmetry reduction exact solution. General variable coefficient KdV equation, nonclassical method of symmetry reduction, exact solution.
  • 相关文献

参考文献1

共引文献24

同被引文献34

  • 1王明亮.BBM方程的孤立波解及其互相作用[J].兰州大学学报(自然科学版),1993,29(3):7-13. 被引量:13
  • 2LIU XIQIANG.EXACT SOLUTIONS OF THE VARIABLE COEFFICIENT KdV AND SG TYPE EQUATIONS[J].Applied Mathematics(A Journal of Chinese Universities),1998,13(1):25-30. 被引量:25
  • 3陈翰林,尚亚东,刘希强.正则化长波方程的显式精确解[J].电子科技大学学报,2005,34(5):709-712. 被引量:2
  • 4Wang M L,Zhou Y B,Li Z B.Application of a homogeneous balance method to exact solutions of nonlinear equations in mathamatical physics[J].Phys Lett(A),1996,213:67-75.
  • 5Wang Mingliang,Zhou Yubin,Li Zhibin. Applications of a homogeneous balance method to exact solutions of nonlinear equation in mathematical physics[J]. Phys Lett,1996,A216:67-75.
  • 6Lu Zhuoshen,Zhang Hongqing. On a further extended tanh mehtod[J]. Phys Lett,2003,A307:269-273.
  • 7Senthilvelan M. On the extended applications of homgeneous balance method[J]. Applied Mathematics and Computation,2001,123:381-388.
  • 8Fan Engui. Two new applications of the homogeneous balance method[J]. Phys Lett,2000,A265:354-357.
  • 9Winternity P, Gayeau J P. Allowed transformations and symmetry classes of variable coefficient Korte weg-de Vries equtions[J]. Phys Lett,1992,A167:246-250.
  • 10Wang Mingliang,Wang Yueming.A new Backland transformation and multi-solitons to the KdV equations with general variable coefficient[J].Phys Lett A,2001,287(3/4):211-216.

引证文献8

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部