摘要
有各种各样的迭代方法(见[1,2])。最近,Chidume在L^P(p≥2)空间上利用Mann迭代方法研究了Lipschitz强单调算子方程(1)解的收敛性问题,对于1<p<2的情况是否也有收敛性定理是[3]中提出的一个公开问题(见[3],Problcm 1])。
In this paper, we prove that the Mann iteration process converges strongly to a solution of a Lipschitian and strongly monotone operator equation in Banach spaces. Our method also shows that suth a solution must necessarily be unique and gives additional information on an explicit error estimate for a particular choice of the iteration parameter.
出处
《工程数学学报》
CSCD
1993年第4期117-121,共5页
Chinese Journal of Engineering Mathematics