摘要
本文对微分方程的数值解法—弥散逼近法在理论方法、实施技术、软件研制等方面进行了探索,通过实例的计算和与传统有限元法计算结果的比较,可见弥散逼近法具有梯度计算精度高、节,点布置与修改的灵活性大、免去坐标变换与传统的单元划分等优,点,是一种很有前途的通用的数值方法。
The theory and application of a newly invented numerical methed for solving the differen- tial equations-Methed of Diffuse Aproxunation ,are studied,and a corresponding software is devel-oped, The numerical results of solutions for some typical cases of differential equations obtained by thepresented procedure are compared with those by the conventional finite element method. It is obviousthat the new methed is of great advantage over the finite element methed,giving better smoothness forthe approximate function and their derivatlves,more convenience for rearrangement of the nodalPoints,etc.
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
1994年第5期93-100,共8页
Journal of Southeast University:Natural Science Edition
关键词
微分方程
数值逼近
弥散逼近
differential equation
numerical solution / diffuse approximation