摘要
基于大系统理论中的集结法,提出了一种简便的动力学模型降阶处理方法。文中针对系统不同的动力学特性,存在相对快变量,存在小量及一般情况,通过选择适当的集结阵和作线性变换处理,分别推导出了相应的降阶模型。分析了该三种降阶模型的降阶精度和适应范围,并通过对某一实际模型进行降阶处理,说明用本文所提出的三种降阶模型的某一种作为原高阶系统的简化模型是可行的。同一般模态集结法相比,本文所提出的模型降阶方法简便许多,它一方面吸取了一般模态集结法保留原系统主要动态特性的优点,同时克眼了一般模态集结法需求原高阶系统的特征值和特征向量而带来巨大工作量的缺点,具有重要的工程实际意义。
A simple reduced-order method for dynamic model is proposed on the basis of the aggregation method. In accordance with the different dynamic characteristics of the systems, such as the fast mode, the small state-vectors, etc. we get three kinds of dynamic reduced-order model by selecting appropriate aggregation matrices and linear transformation. The errors and the applied ranges of these models are discussed. An example shows that this reduced-order method is feasible. To compare with the ordinary mode aggregation method, the reduced-order method in this paper is very simple, able to keep the advantages of the main dynamic characteristics of the ordinary system, and overcoming the defect of large working capacity resulted from the need of high dimensional system eigenvalues and eigenvectors in the ordinary mode aggregation method. It consumes less computer time, and has practical significance in engineering.
出处
《南京航空航天大学学报》
CAS
CSCD
1994年第4期464-470,共7页
Journal of Nanjing University of Aeronautics & Astronautics
关键词
大系统
动态模型
模型降阶
集结法
model theory
large-scale systems
dynamic models
model reduction
aggregation method