期刊文献+

平行平板微型槽间气体的滑移流动 被引量:2

Gaseous Slip Flow in Parallel Plates MicroChannel
下载PDF
导出
摘要 对平行平板微型槽中气体滑移流动的压强分布特性进行了研究。将压强和气体平均分子自由程的关系引入到一阶速度滑移边界条件中,求解Navier-Stokes方程,得到了显式的压强分布表达式。模拟计算结果表明,平行平板间滑移流动的气体压强分布曲线是上凸的下降抛物曲线。在边界滑移条件下,分析了平行平板微型槽在应用中由于微型槽中压力分布变化形成的气体阻尼问题,分析结果表明无滑移边界条件在微尺度流动分析中不再适用。 In this paper, pressure distribution of gaseous slip flow in parallel plates microchannel was studied. The relation between pressure and gas modular mean free path was introduced into one order velocity slip boundary condition. And then explicit expression of pressure distribution was obtained through solving Navier-Stokes Equation. Computational results showed that pressure distribution curve in parallel plates microchannel was convex decreasing parabolic curve. Based on slip boundary condition, gas damping caused by changes of pressure distribution along the microchannel was studied in the application of parallel plates microchannel. Computing results showed that traditional non-ship boundary condition was no longer applicable in micro flow analysis.
出处 《微纳电子技术》 CAS 2005年第3期129-132,共4页 Micronanoelectronic Technology
基金 国家自然科学基金青年科学基金资助项目(50205020)
关键词 滑移流动 平均自由程 压强分布 气体阻尼 slip flow mean free path pressure distribution gas damping
  • 相关文献

参考文献4

  • 1GAD-EL-HAK M. The fluid mechanics of microdevices-the freeman scholar lecture [J] . Journal of Fluids Engineering,1999, 121: 5-30.
  • 2孙宏伟,顾维藻,刘文艳.速度滑移和温度阶跃对微尺度流动和换热的影响[J].工程热物理学报,1998,19(1):94-97. 被引量:5
  • 3ARKILIC E B, SCHMIDT M A, BREUER K S. Gaseous slip flow in long microchannels [J] . Journal of Microelectromechanical System, 1997, 6 (2): 167-177.
  • 4SHERMAN F.Viscous Flow[M].New York:McGraw-Hill,1990.371-373.

二级参考文献2

  • 1姜培学,中国工程热物理学会传热传质学学术会议论文集,1995年
  • 2Wu P Y,Cryogenices,1983年,273页

共引文献4

同被引文献13

  • 1吴承伟,马国军.关于流体流动的边界滑移[J].中国科学(G辑),2004,34(6):681-690. 被引量:13
  • 2尹晓妮,彭旭东.考虑滑移流条件下干式气体端面密封的有限元分析[J].润滑与密封,2006,31(4):55-56. 被引量:18
  • 3Brad A,Miller Itzhak Green.Semi-Analytical Dynamic Analysis of Spiral-Grooved Mechanical Gas Face Seals[J].J Tribol,2003,125:403-413.
  • 4Beskok A.Validation of a new velocity-slip model for separated gas micro flows[J].Num Heat Tran-B,2001,40:451-471.
  • 5Sorin C,Theo G K J R,Florin D.Calculation of the Flow in High-Speed Gas Bearings Including Inertia Effects Using the CE/SE Method[J].Trib Trans,2004,47:402-412.
  • 6Kang J H,Kim S G,Kim K W.A New Boundary Condition for the Interconnected Boundary of Air-Lubricated Groove Journal and Thrust Bearings[J].Trib Trans,2005,48:199-207.
  • 7Mitsuya Y.Modified Reynolds Equation for Ultra-Thin Film Gas Lubrication Using 1.5-Order Slip-Flow Model and Considering Surface Accommodation Coefficient[J].ASME J Tribol,1993,115:289-294.
  • 8GAD-EL-HAK M.The fluid mechanics of microdevices-the freeman scholar lecture[J].Journal of Fluids Engineering,1999,121(3):5-33.
  • 9ZHAO H Z.The numerical solution of gaseous slip flows in microtubes[J].Heat Mass Transfer,2001,28 (4):585-594.
  • 10JANG J,WERELEY S T.Pressure distributions of gaseous slip flow in straight and uniform rectangular microchannels[J].Microfluidics Nanofluid,2004,1 (1):41-51.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部