期刊文献+

稻秸对土壤细菌群落分子多态性的影响 被引量:17

EFFECT OF RICE STRAW ON MOLECULAR PHYLOGENETIC DIVERSIFY OF SOILBACTERIAL COMMUNITIES
下载PDF
导出
摘要 模拟稻秸原位还田条件,分别在水稻土和红壤中添加水稻秸秆培养70d ,第0、5、2 5、4 5、70天采集土样。采用非机械破壁法直接提取水稻土和红壤细菌总DNA ,水稻土细菌总DNA经过二次纯化;红壤细菌总DNA经过一次纯化后,PCR扩增其16SrDNAV3可变区,均可获得清晰的目的条带,对扩增产物进行DGGE分析,结果显示:水稻土和红壤样品的DGGE条带增加,说明稻秸能够增加土壤细菌群落分子多态性的丰富度,随着培养期的延长,施有稻秸的处理中土壤细菌群落多态性的变化远远复杂于空白对照土壤中的细菌群落变化; Rice straw transformation takes place in soil but effects of rice straws on relations between soils and bacterial communities of the soils are still poorly understood. PCR and denaturing gradient gel electrophoresis (DGGE) were used to monitor development of bacterial communities in paddy soil and red soil, into which rice straw or rice straw plus biological agent was applied during incubating period, respectively. The total bacterial DNA from the two studied soils was extracted directly on D0,D5,D25,D45 and D70. The DNA from paddy soil was purified twice, but the DNA from red soil was done only once. The regions V3 of the 16S rDNA of bacteria from the two soils were amplified. DGGE profiles of the PCR productions were compared by similarity analysis. The results show simple DGGE profiles for controls of the two soils without rice straw. Rice straw was incubated in paddy soil and red soil for 70 days. DGGE profiles revealed that the composition of the bacterial community in soil with rice straw was more complex than CK during the incubating period. Meanwhile, the results show that peaks of the bacterial communities appeared at different times in the paddy soil and red soil, treated with rice straw during incubation times.
出处 《土壤学报》 CAS CSCD 北大核心 2005年第2期270-277,共8页 Acta Pedologica Sinica
基金 上海市科技兴农重点攻关项目 (农科攻字 (2 0 0 0 ) 5 -6号 )资助
关键词 土壤细菌 水稻土 红壤 群落 总DNA 分子多态性 还田 DGGE 细菌群 纯化 Molecular polyphylogenetic diversify Denaturing Gradient Gel Electrophoresis Rice straw Soil bacteria
  • 相关文献

参考文献19

  • 1陈洪章,李佐虎.纤维素原料微生物与生物量全利用[J].生物技术通报,2002,18(2):25-29. 被引量:54
  • 2滕应,黄昌勇,骆永明,龙健,姚槐应.铅锌银尾矿区土壤微生物活性及其群落功能多样性研究[J].土壤学报,2004,41(1):113-119. 被引量:106
  • 3Grant R F. Simulation of methanogenesis in the mathematical model ECOSYS. Soil Biology & Biochemistry, 1998, 30:883 ~ 896.
  • 4Chin K J, Rainey F A, Janssen P H, et al. Methanogenic degradation of polysaccharides and the characterization of polysaccharolytic clostridia from anoxic rice field soil. Systematic and Applied Microbiology, 1998, 21:185 ~ 200.
  • 5Chin K J, Hahn D, Hengstmann U, et al. Characterization and identification of numerically abundant culturable bacteria from the anoxic bulk soil of rice paddy microcosms. Applied and Environmental Microbiology, 1999, 65:5 042~ 5 049.
  • 6Stams A J M. Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenhoek International Journal of General and Molecular Micr., 1994, 66:271 ~294.
  • 7Kimura M, Tun C C. Microscopic observation of the decomposition process of leaf sheath of rice straw and colonizing microorganisms during the cultivation period of paddy rice. Soil Science and Plant Nutrition, 1999, 45:427 ~ 437.
  • 8Ward D M, Weller R, Bateson M M. 165 rRNA reveal numerous uncultured microorganisms in a natural community. Nature, 1990,345: 63 ~ 65.
  • 9Amann R I, Ludwig W, Schleifeer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation.Microbiological Reviews, 1995, 59:143 ~ 169.
  • 10Wintzingerode F, Gobel U B, Stackebrandt E. Determination of microbial diversity in environmental samples: Pitfalls of PCR-based rRNA analysis. FEMS Microbiology Reviews, 1997, 21:213 ~ 229.

二级参考文献17

  • 1[1]Jung M C, Thornton I. Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine, Korea. Applied Geochemistry, 1996, 11:53~59
  • 2[2]Mcgregor R G, Blowes D W, Jambor J L. The solid-phase controls on the mobility of heavy metals at the copper cliff tailings area, Sudbury, Ontario, Canada. Journal of Contaminant Hydrology, 1998, 33:247~271
  • 3[4]Shun W S, Yeb Z H, Lana C Y, et al. Acidification of lead-zinc mine tailings and its effect on heavy metal mobility. Environment International, 2001, 26:389~394
  • 4[5]Lee C G, Chon H T, Jung M C. Heavy metal contamination in the vicinity of the Daduk Au-Ag-Pb-Zn mine in Korea. Applied Geochemistry, 2001, 16:1 377~1 386
  • 5[8]Tordo G M, Baker A M, Willis A J. Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere, 2000, 41:219~228
  • 6[11]Bth E. Effects of heavy metal in soil on microbial processes and populations: A review. Water Air Soil Pollut., 1989, 335~379
  • 7[12]Knight B. Biomass carbon measurements and substrate utilization patterns of microbial populations from soils amended with cadmium,copper,or zinc. Applied and Environmental Microbiology, 1997, 63:39~43
  • 8[13]Flie β bach A R, Martens H. Soil microbial biomass and activity in soils treated with heavy metal contaminated sewage sludge. Soil Biol. Biochem., 1994, 26:1 201~1 205
  • 9[14]Insam H, Hutchinson T C. Effects of heavy metals on the metabolic quotient of the soil microflora. Soil Biol. Biochem.,1996,28(4/5):691~697
  • 10[17]Kandeler E, Luftenegger G, Schwarz S. Influence of heavy metals on the functional diversity of soil microbial communities. Biology and Fertility of Soils, 1997, 23:299~306

共引文献158

同被引文献293

引证文献17

二级引证文献150

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部