期刊文献+

特征识别—反馈型神经网络设计 被引量:5

Feature Recognition Based on Elman Feedback Neural Networks
下载PDF
导出
摘要 构造一个Elman反馈神经网络来进行模式识别,给出了所构造的Elman反馈神经网络的结构,它相对于BP网络的优势在于它能在有限时间内以任意精度逼近任意函数,在错误概率最小的条件下,使识别的结果尽量与客观事物相符。对二者的识别错误率进行比较,结果表明,反馈神经网络在模式识别的稳定性及真实性上有着BP网络所无法比拟的优势。对如何提高反馈神经网络的辨识精度做了一些探讨。 An Elman neutral network is constructed for model identification.The traditional BP calculate way is lack of satisfication on the stability,study rate and recognition accuracy. In comparison with BP calculate way, it can approach to any function with arbitrary accuracy in limited time and make the identification result agree with the object with minimum mistake rate. The experiment shows that the Elman feedback neural network is better than BP network on the stability and reliability of mode identification.
作者 陈奕琳
出处 《控制工程》 CSCD 2005年第2期141-143,共3页 Control Engineering of China
关键词 特征识别 BP前向网络 Elman反馈神经网络 隐含层 性能函数 模式识别 feature recognition BP feedforward neutral network Elman feedback neutral network hidden layer performance function
  • 相关文献

参考文献6

  • 1谢庆国,沈轶,万淑芸.Elman人工神经网络的收敛性分析[J].计算机工程与应用,2002,38(6):65-66. 被引量:14
  • 2飞思科技产品研发中心.Matlab6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2004..
  • 3Pham D T,-Liu X. Training of Elman networks and dynamic system modehng [ J ]. International Journal of Systertrs Science, 1996,27(2) :221-226.
  • 4Kechriotis I, Manolakos E S. Hopfield mural network implementation in the optimal CDMA multiuser detector [J]. IEEE.Trans on Neural Networks, 1996,7( 1 ) : 131-141.
  • 5Hopfield J I. Neural networks and physical systerm with emergent collective computational abilities [ J]. Proc Nail Acad Scien USA, 1982,79(4) : 2445-2558.
  • 6Hopfield J J, Tank D W. Neural computation of decision in optimization problems [J]. Biological Cybernetics, 1985,52(3) :141-152.

二级参考文献3

共引文献16

同被引文献18

  • 1杜晓坤,付华.基于Bayes估计的多传感器最优融合[J].工业控制计算机,2005,18(3):16-17. 被引量:2
  • 2王珂娜,邹北骥,黄文梅.一种基于神经网络的畸变图像校正方法[J].中国图象图形学报(A辑),2005,10(5):603-607. 被引量:25
  • 3付华,杜晓坤,陈峰.基于Elman网络的超声测距补偿在煤矿机器人中的应用[J].煤炭学报,2005,30(6):783-787. 被引量:12
  • 4施阳.MATLAB语言工具箱[M].西安:西北工业大学出版社,1998..
  • 5Coombs K, Freel D, Lampert D, et al. Using dempster-shafer methods for object classification in the theater ballistic missile environment[ J]. SPIE,1999 (3719) :103 -113.
  • 6Pham D T,Liu X. Training of Elman networks and dynamic system modeling[J]. International Journal of System Science,1996,27(2 ) :221 -226.
  • 7Hashimoto M, Hattori T, Horiuchi M. Development of a torque sensing robot arm for interactive communication [ C ]//Proceedings of the IEEE Interanational Conference on Robot and Human Interactive Communication, September 25 - 27, 2002, Berlin, German : IEEE ,2002:344 - 349.
  • 8Chen S, Cowan C F N, Grant P M. Orthogonal least squares learning algorithms for radial basis function networks [ J ]. Transactions Neural Networks, 1991,2 (2) :302 - 309.
  • 9施阳.MATLAB语言工具箱[M].西安西北工业大学出版社,1998..
  • 10Doctor B. Kenewher, Doctor B. Anforof. Technological development trend and prospect of underground ore robot [ J ] . Australian Mining, 1994 (6) : 34 -35.

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部