期刊文献+

基于KPLS的网络入侵特征抽取及检测方法 被引量:14

KPLS approach for network intrusion feature extraction and detection
下载PDF
导出
摘要 从特征抽取的角度研究提高入侵检测性能问题,提出应用核偏最小二乘(KPLS)进行入侵特征抽取和检测的方法.其优点在于KPLS能非线性地抽取输入特征的多个正交分量,并保持与输出类别的相关性,可同时完成入侵特征抽取和判别.将该方法应用于基于Linux主机的入侵检测实验,取得了比SVM和KPCR等方法更好的效果. A novel KPLS based network intrusion feature extraction and detection approach is put forward, among which KPLS serves as simultaneously a non-linear feature extractor and a decision maker. KPLS approach bears the merits that it can not only extract orthogonal score vectors from explanatory variables, but also remain good correlation with response variables. The feature extraction procedure and decision making procedure can be achieved at one time. The novel method is applied to an up-to-date Linux-hosted IDS experimental system and better performance is attained in comparison to SVM and KPCR etc.
出处 《控制与决策》 EI CSCD 北大核心 2005年第3期251-256,共6页 Control and Decision
基金 国家重点基础研究发展规划项目(2002CB312200) 国家自然科学基金项目(69974014) 教育部高校博士点基金项目(20040251010).
关键词 核方法 核偏最小二乘 非线性特征抽取 异常检测 支持向量机 Computer networks Decision making Edge detection Nonlinear systems Robot learning
  • 相关文献

参考文献10

  • 1李辉,管晓宏,昝鑫,韩崇昭.基于支持向量机的网络入侵检测[J].计算机研究与发展,2003,40(6):799-807. 被引量:79
  • 2王行愚.在虚拟与现实之间——自动化若干发展方向刍议[J].自动化学报,2002,28(S1):77-84. 被引量:7
  • 3Andrew H Sung. Identify important features for intrusion detection using support vector machines and neural networks[A]. IEEE Proc of the 2003 Symp on Application and the Internet[C]. Orlando: IEEE Computer Society Press, 2003: 209-216.
  • 4Wang Y, Yang H H, Wang X Y, et al. Distributed intrusion detection system based on data fusion method[A]. The 5th World Congress on Intelligent Control and Automation[C]. New Jersey: IEEE Press, 2004: 4331-4334.
  • 5TrevorHastie RobertTibshirani JeromeFriedman 范明 译.统计学习基础--数据挖掘、推理与预测[M].北京:电子工业出版社,2004..
  • 6Roman Rosipal, Leonard Trejo, Bryan Matthews. Kernel PLS-SVC for linear and nonlinear classification[A]. Proc of the 20th Int Conf on Machine Learning[C]. Washington, 2003:640-647.
  • 7Roman Rosipal, Leonard J Trejo. Kernel partial least squares regression in reproducing kernel Hilbert space[J]. J of Machine Learning Research, 2001,2: 97-123.
  • 8Matthews Barker, Williams Rayens. Partial least squares for discrimination[J]. J of Chemometrics, 2003,17: 166-173.
  • 9Matthew V Mahoney, Philips K Chan. An analysis of the 1999 DARPA/Lincoln laboratories evaluation data for network anomaly detection[R]. Florida: Florida Institute of Technology,2003.
  • 10Bernhard Schlkopf, Alexander J Smola. Learning with kernels: Support vector machines, regularization, optimization and beyond[M]. Cambridge: MIT Press, 2002.

二级参考文献15

共引文献86

同被引文献160

引证文献14

二级引证文献172

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部