期刊文献+

随机周期序列k错线性复杂度的期望上界 被引量:4

Upper bound of expected value of the k-error linear complexity of random periodic sequences
下载PDF
导出
摘要 周期序列的k错线性复杂度是衡量流密码系统的安全性能的一个重要指标。本文给出了周期序列k错线性复杂度上界的一个更强的结果,从而给出了几种不同情形下随机周期序列k错线性复杂度的期望的上界。特别地,还给出了周期N=pv,随机周期序列满足一定条件时1错线性复杂度的期望更紧的结果。 The k-error linear complexity of periodic sequences is one of the important security indices of stream cipher systems. We give a more tight upper bound for the k-error linear complexity of periodic sequence. The upper bounds of the expected value of the k-error linear complexity of random periodic sequences of certain periods are given by using that result. Furthermore, The more tight results of the 1-error linear complexity of random periodic sequences with period N=pvwhich satisfies certain conditions are obtained.
作者 苏明 符方伟
出处 《通信学报》 EI CSCD 北大核心 2005年第2期60-65,共6页 Journal on Communications
基金 国家自然科学基金资助项目(60172060) 教育部跨世纪优秀人才培养计划基金资助项目 高等学校骨干教师计划基金资助项目
关键词 流密码系统 周期序列 K错线性复杂度 期望 上界 stream cipher systems periodic sequences k-error linear complexity expectation upper bound
  • 相关文献

参考文献7

  • 1STAMP M, MARTIN C F. An algorithm for the k-error linear complexity of binary sequences with period 2n [J]. IEEE Trans Information Theory, 1993, 39(7): 1398-1401.
  • 2MEIDL W. Linear complexity, k-error linear complexity, and the discrete fourier transform[J]. J Complexity, 2002, 18(1): 87-103.
  • 3MEIDL W, NIEDERREITER H. On the expected value of the linear complexity and the k-error linear complexity of periodic sequences[J].IEEE Trans Information Theory, 2002, 48(11): 2817-2825.
  • 4NIEDERREITER H. Periodic sequences with large k-error linear complexity[J]. IEEE Trans Information Theory, 2003, 49(2): 501-505.
  • 5XIAO G, WEI S, LAM K Y, lMAMURA K. A fast algorithm for determining the linear complexity of a sequence with period pn over GF(q) [J]. IEEE Trans Information Theory, 2000, 46(9): 2203-2205.
  • 6ROMANS. Coding and Information Theory[M]Springer-Verlag, 1992. 171.
  • 7KUROSAWA K, SATO F, SAKATA T, KISHIMOTO W. A relationship between linear complexity and k-error linear complexity[J]. IEEE Trans Information Theory, 2000, 46(3): 694-698.

同被引文献34

  • 1陈智雄,牛志华,吴晨煌.周期为素数平方的二元序列的k-错线性复杂度[J].密码学报,2019,6(5):574-584. 被引量:2
  • 2王菊香,朱士信.F_p上周期序列S~∞与~∞的线性复杂度分析[J].计算机应用研究,2009,26(2):742-743. 被引量:6
  • 3白恩健,刘晓娟,肖国镇.确定周期为P^n的二元序列k-错复杂度曲线的快速算法[J].通信学报,2004,25(10):1-7. 被引量:4
  • 4苏明,符方伟.随机周期序列k错线性复杂度的方差估计[J].电子学报,2005,33(2):279-283. 被引量:3
  • 5Fu F,Niederreiter H.The Expectation and Variance of the Joint Linear Complexity of Random Periodic Multisequences[J].Journal of Complexity,2005,21(6):804-822.
  • 6Meidl W,Niederreiter H.On the Expected Value of the Linear Complexity and the K-error Linear Complexity of Periodic Sequences[J].IEEE Trans.on Information Theory,2002,48(11):2817-2825.
  • 7Meidl W,Niederreiter H.The Expected Value of the Joint Linear Complexity of Periodic Multisequences[J].Journal of Complexity,2003,19(1):61-72.
  • 8Meidl W.Linear Complexity,K-error Linear Complexity and the Discrete Fourier Transform[J].Journal of Complexity,2002,18(1):87-103.
  • 9Games R A,Chan A H.A Fast Algorithm for Determining the Complexity of a Pesudo-random seQuence with Period 2n[J].IEEE Trans.on Inform.Theory,1983,29(1):144-146.
  • 10Xiao G,Wei S,Lam K Y,et al.A Fast Algorithm for Determining the Linear Complexity of a Sequence with Period pn over GF(q)[J].IEEE Trans.on Information Theory,2000,46(6):2203-2205.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部