摘要
研究在第一临界情形下的一类特殊的5次多项式微分系统,利用Poincare变换、环域定理、闭轨道星形的特点等方法,得到有关极限环的存在性、唯一性及稳定性的结果;指出第一临界情形下的一类5次系统.至多有一个极限环,如果存在则是稳定的.并给出了存在性条件,进而指出了其所有可能的全局相图,计有64种.
Using Poincare transformation and Poincare-Bendixson theorem, sufficient conditions for the existence, uniqueness and stability of the limit cycles for a kind of fifth order differential equation are obtained. It is proved that such a kind of systems has at most one limit cycle and the existence is accompanied by the stability. Furthermore, almost all possible global phase portraits, 64 altogether, are indicated.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2005年第1期9-15,39,共8页
Journal of East China Normal University(Natural Science)
关键词
高阶奇点
有限远奇点
无穷远奇点
临界情形
higher order singular point
finite singular point
infinite singular point
critical conditon