摘要
本文导出了线弹性动力学的广义虚功原理,在此基础上,引用拉氏乘子,系统地建立了一系列Gurtin型变分原理。本文方法较已有的方法更为简单、直接、统一,且力学意义明确,能清楚地阐明各种Gurtin型变分原理间的相互关系。
A general virtual work principle for linear elastodynamic problems ispresented. On such basis ,a series of Gurtin-type varitional principles areobtained via the intreduction of lagrangian multipliers. In comparison withexisting investigations,the present work is more simple, direct andsystematic.In specific,clear-cut physical reasoning is provided.The inter-connections among these principles are distinctly established.
出处
《西南交通大学学报》
EI
CSCD
北大核心
1994年第5期460-467,共8页
Journal of Southwest Jiaotong University
基金
国家自然科学基金
博士点基金
关键词
变分原理
线弹性动力学
乘子
variational principles
linear elastodynamics
convolution
lagrangianmultiplier