期刊文献+

一种基于神经网络的X光图像畸变校正方法 被引量:1

An Xray Image Distortion Correction Method Based on Neural Network
下载PDF
导出
摘要 通过对X光图像所产生畸变的分析,提出了一种基于泛化能力的神经网络系统整体校正方法。该方法只需确定网络输入输出和约束条件,无需考虑中间过多的不确定因素,即可建立空间点与图像点的映射关系,然后采用双线性变换进行灰度插值。实验表明,该方法校正效果好,能够满足对图像进行分析处理的要求。 By the analysis of Xray image distortion,this paper presents a neural network system correction method based on global optimization.This method requires the input,output and restriction conditions without considering the overmany uncertain factors,and can set up the mapping relations between space points and image points, then adopts a bilinear interpolation method for graylevel determination.Experimental results indicate that this method has good correction effect,and can meet the demands of image analysis and processing.
机构地区 哈尔滨工业大学
出处 《机械与电子》 2005年第3期38-41,共4页 Machinery & Electronics
关键词 X光图像 畸变校正 神经网络 Xray image distortion correction neural network
  • 相关文献

参考文献9

  • 1徐春晖,徐向东.前馈型神经网络新学习算法的研究[J].清华大学学报(自然科学版),1999,39(3):1-3. 被引量:40
  • 2Baltzopoulos V. A videofluoroseopy method for optical distortion correction and measurement of knee - joint kinematies[J]. Clinical Biomechanies, 1995,10 (2) : 85--92.
  • 3Rudin S, Bednarek D R, Wong R. Accurate characterization of image - intensifier distortion [J]. Medical Physics, 1991,18(6) : 1145-- 1151.
  • 4Forlani C, Ferrigno G. In.. alexandrov VN. automatic realtime XRII local distortion correction method for digital linear tomography, ICCS 2001 [J]. LNCS 2001,2074:23--26.
  • 5Rigler A K, Irvine J M, Vogl T P. Resealing of variables in baek propagation learning [J]. Neural Networks, 1990,3(5) ,561--573.
  • 6Battiti R. First and second - order methods for learning: Between steepest deseent and Newton's method[J]. Neural Compute, 1992,4(2) : 141 -- 166.
  • 7Hagan M T,Menhaj M. Training neural networks with the marquardt algorithm [J]. IEEE Transactions on Neural Networks, 1994,6 (5):989 -- 993.
  • 8Lera G, Pinzolas M. A quasi - local levenberg - marquardt algorithm for neural network training[J]. IEEE Transactions on Neural Networks, 2001, (3) : 2242 --2246.
  • 9Ampazis Nikolaos, Perantonis Stavros J. Two highly effieient seeond -order algorithms for training feedforwa-rd networks[J]. IEEE Transaetions on Neural Networks,2002,13(55):1064-- 1074.

二级参考文献8

共引文献39

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部