摘要
SPN结构中的扩散层往往是矢量空间GF(2m)n上的线性变换,它与n阶矩阵在确定基 下一一对应。分支数B=n+1的扩散层是最优的,其充分必要条件是:对应矩阵的任意k阶子阵均 为非奇异。设计了构造最优SPN线性层的算法,并给出了线性变换最优扩散特性的验证算法。最 后,给出GF(28)8上一个最优线性变换及其验证结果的示例。
Most of diffusion layers are linear transformations on the vector space GF(2 m) n for SPN structures, which correspond to n-rank matrices under certain bases. The diffusion layers in which branch numbers B equals n+1 are optimal, iff their corresponding matrices have no singular square submatrices. An algorithm was proposed to construct optimal linear layers. In order to validate the optimization of diffusion layers, an algorithm was provided. As an example, a optimal linear mapping over GF(2 8) 8 and its optimization-validation were presented.
出处
《计算机应用》
CSCD
北大核心
2005年第4期856-858,共3页
journal of Computer Applications
关键词
SPN
最优扩散
分支数
非奇异子方阵
SPN
optimal diffusion
branch number
nonsingular square submatrix