期刊文献+

用一种新的独立分量分析算法实现极化SAR图像相干斑抑制 被引量:4

Speckle Reduction of Polarimetric SAR Image Based on a New Independent Component Analysis
下载PDF
导出
摘要  极化SAR图像为雷达图像中的信息处理和获取提供了更为便捷的途径。本文在研究极化SAR成像特点的基础上,介绍了用一种新的独立分量分析(ICA)方法—Infomax算法来进行相干斑抑制,完成了从极化SAR图像中分离相干斑噪声的仿真试验。实验表明,Infomax算法收敛速度较慢,但稳健性好。经 ICA处理后的图像其相干斑噪声得到了有效的抑制,具有较低的相干斑指数,明显地改善了图像的质量。 The polarimetric SAR image provides a very convenient approach for signal processing and acquisition of radar image. Based on the characteristic of polarimetric SAR image, a new Independent Component Analysis(ICA) algorithm is proposed for speckle reduction, which is Infomax algorithm.Then the simulation of separation of speckle from polarimetric SAR image is accomplished.The experiment shows that the Infomax algorithm has lower convergence and higher reliability.The image processed by the ICA algorithm generally has lower contrast ratio which implies a reduced speckle effect.And the image quality has been improved greatly.
出处 《雷达科学与技术》 2005年第1期31-35,共5页 Radar Science and Technology
基金 高校博士点专项科研基金资助项目(No.20030614001)
关键词 独立分量分析 主分量分析 峭度 极化SAR 相干斑 高阶统计量 independent component analysis principal component analysis kurtosis polarimetric SAR speckle higher-order statistics
  • 相关文献

参考文献5

  • 1Hyvarinen A,Oja E.A Fast Fixed-Point Algorithm for Independent Component Analysis[].Neural Computation.1997
  • 2Chen C H,Zhang Xiao-hui.Independent Component Analysis for Remote Sensing Study[].Proceedings of SPIE Volume.1999
  • 3Lee T-W,Girolami M,Sejnowski T J.Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources[].Neural Computation.1999
  • 4Pi Yi-ming,et al.Polarimetric Speckle Reduction Using Multi-Texture Maximum Likelihood Method[].IEEE Electronics Letters.2003
  • 5Fiori S.Overview of Independent Component Analysis Technique with an Application to Synthetic Aperture Radar ( SAR) Imagery Processing[].Neural Networks.2003

同被引文献26

  • 1王文光,王俊,毛士艺.一种基于差异度的极化SAR图像迭代分类方法[J].电子与信息学报,2006,28(11):2007-2010. 被引量:9
  • 2李晓玮,种劲松.基于目标相干散射特性的极化SAR图像分解分类方法[J].遥感技术与应用,2007,22(3):443-448. 被引量:4
  • 3CUNBA A L, ZHOU J, DO M N. The nonsubsampled contourlet transform: Theory design and applications [J]. IEEE Trans on Image Process, 2006, 15(10) :3089-3101.
  • 4LEE T-W, GIROLAMI M, SEJNOWSKI T J. Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources [J]. Neural Computation,1999,11(2):417-441.
  • 5DO M N, VETTERLI M. The Contourlet transform., an efficient directional multiresolution image representation [J]. IEEE Trans on Image Proc, 2005,14(12) : 1-16.
  • 6A. J. BELL, T. J. SEJNOWSKI. An information max- imization approach to blind separation and blind deconvo- lution. Neural Computation 7. 1995,1129-1159.
  • 7COIFMAN P R, DONOHO D L. Translation invariant denoising in wavelets and statistics[A]. In.. Springer Lec ture Notes in Statistics 103EM~. New York: SpringerVerlag, 1995.
  • 8SENDUR L, SELESNICK I W. Bivariate shrinkage with local variance estimation[J]. IEEE Signal Processing Letters, 2002, 9(12):438-441.
  • 9Lee J S, Eric Pottier. Polarimetric Radar Imaging: from Basics to Applications[M]. [s. 1. ]: CRC Press, 2009.
  • 10Chris Oliver, Shaun Quegan. Understanding Synthetic Aperture Radar Images[M]. Boston, Lodon: Artech House, 1998.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部