期刊文献+

非均质Euler-Bernoulli梁的非线性耗散边界反馈镇定(英文)

A Note on Nonlinear Boundary Stabilization of Nonuniform Euler-Bernoulli Beam
下载PDF
导出
摘要 讨论具有非线性耗散边界反馈的非均质 Euler- Bernoulli梁的镇定问题 .首先利用非线性半群理论和能量摄动方法 ,证明了文中所给出的非线性耗散边界反馈控制可以镇定闭环系统的能量 ,并导出了闭环系统的能量的衰减速度 . We give a note on the stabilization problem of nonuniform Euler-Bernoulli beam with some nonlinear boundary feedback controls. By virtue of nonlinear semigroup theory, energy-perturbed approach and exponential multiplier method, we show that the vibration of the beam under the proposed control action decays exponentially or in negative power of time t as t→∞.
出处 《应用泛函分析学报》 CSCD 2004年第4期316-321,共6页 Acta Analysis Functionalis Applicata
基金 This research is supported by China Geosciences University(Beijing)
关键词 反馈镇定 耗散 半群理论 边界反馈控制 摄动方法 非线性 能量 闭环系统 镇定问题 衰减 nonuniform Euler-Bernoulli beam nonlinear boundary feedback stabilization nonlinear semigroups energy perturbed approach
  • 相关文献

参考文献3

二级参考文献5

  • 1冯德兴,张维弢.Euler-Bernoulli梁的反馈镇定[J].自动化学报,1996,22(2):135-144. 被引量:6
  • 2Feng, D.X., Zhang, W.T. Nonlinear feedback control of Timoshenko beam. Science in China (Series A),38:918-927 (1995).
  • 3Liu, K.S., Liu, Z.Y. Exponential decay of energy of the Euler-Bernoulli beam with locally distributed Kelvin-Voigt damping. SIAM J. Control and Optimization, 36:1086-1098 (1998).
  • 4Yan, Q.X. Boundary stabilization of Timoshenko beam. Systems Science and Mathematical Sciences,13(4): 376-384 (2000).
  • 5Barbu, V. Nonlinear semigroups and differential equations in Banach spaces. Nordhoff, International Publishing, Bucuresti, Romania, 1976.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部