摘要
A novel algorithm based on Radon-Ambiguity Transform (RAT) and Adaptive Signal Decomposition (ASD) is presented for the detection and parameter estimation of multicompo-nent Linear Frequency Modulated (LFM) signals. The key problem lies in the chirplet estimation. Genetic algorithm is employed to search for the optimization parameter of chirplet. High estimation accuracy can be obtained even at low Signal-to-Noisc Ratio(SNR). Finally simulation results are provided to demonstrate the performance of the proposed algorithm.
A novel algorithm based on Radon-Ambiguity Transform (RAT) and Adaptive Signal Decomposition (ASD) is presented for the detection and parameter estimation of multicomponent Linear Frequency Modulated (LFM) signals. The key problem lies in the chirplet estimation.Genetic algorithm is employed to search for the optimization parameter of chirplet. High estimation accuracy can be obtained even at low Signal-to-Noise Ratio(SNR). Finally simulation results are provided to demonstrate the performance of the proposed algorithm.
基金
SupportedbyKeyLab.forRadarSignalProcessingFoundation(No.51431050103ZS0106)