期刊文献+

JORDAN神经网络在系统辨识中应用研究 被引量:2

The application research on system identification of Jordan networks
下载PDF
导出
摘要 给出了基于强跟踪滤波器的Jordan神经网络训练方法,该方法是一种新的学习算法。Jordan网络可以表示输出的动态特性,改进后还可以反映状态特性,更适于动态系统辨识。强跟踪滤波具有鲁棒性好、收敛快等优点,将两者结合可以得到很好的辨识效果。最后,通过仿真实例验证该方法的有效性。 A new kind of training method of Jordan neural network is given, which is based on strongtracking filter. The Jordan network is able to express the dynamic characteristic, theimproved network can also reflect state characteristic, and is suitable to dynamic systemidentification. Strong tracking filter has the strongpoint of the robustness is better and theconvergence is quick, and when they are integrated, the better identification effect is gained.At last, a model identification example is given to show the effectiveness of the method.
机构地区 河北工程学院
出处 《制造业自动化》 北大核心 2005年第3期16-18,共3页 Manufacturing Automation
基金 国家自然科学基金资助项目(60474019)。
关键词 Jordan网络 强跟踪滤波器 系统辨识 学习算法 Jordan neural network strong tracking filter system identification studying arithmetic
  • 相关文献

参考文献5

  • 1丛爽,高雪鹏.几种递归神经网络及其在系统辨识中的应用[J].系统工程与电子技术,2003,25(2):194-197. 被引量:33
  • 2时小虎,梁艳春,徐旭.改进的Elman模型与递归反传控制神经网络[J].软件学报,2003,14(6):1110-1119. 被引量:57
  • 3KALINLI A,KARABOGA D. Training recurrent neural networks by using parallel tabu search algorithm based on crossover operation[J]. Engineering Applications of Artificial Intelligence, 2004,17(5):529-542.
  • 4PHAM D T, KARABOGA D. Training elman and jordan networks for system identification using genetic algorithms[J].Artificial Intelligence in Engineering, 1999,13(2):107-117.
  • 5PHAM D. A recurrent backpropagation neural network for dynamic system identification[J]. Journal of Systems Engineering, 1992:2(4):213-223.

二级参考文献20

  • 1Senjyu T, Yokoda S, Uezato K. A study on high-efficiency drive of ultrasonic motors. Electric Power Components and Systems,2001,29(3 ): 179- 189.
  • 2Uehino K. Piezoelectric motors: Overview. Smart Materials and Structures, 1998,7(3):273-285.
  • 3Hagood NW, McFarland AJ. Modeling of a piezoelectric rotary ultrasonic motor. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1995,42(2):210--224.
  • 4Senjyu T, Miyazato H, Yokoda S, Uezato K. Speed control of ultrasonic motors using neural network. IEEE Transactions on Power Electronics, 1998,13(3):381-387.
  • 5Lin F J, Wai R3, Shyu KK, Liu TM. Recurrent fuzzy neural network control for piezoelectric ceramic linear ultrasonic motor drive.IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2001,48(4):900-913.
  • 6Senjyu T, Yokoda S, Uezato K. Speed control of ultrasonic motors using fuzzy neural network. Journal of Intelligent Fuzzy System,2000,8(2):135-146.
  • 7Lin F J, Wai R J, Hong CM. Recurrent neural network control for LCC-resonant ultrasonic motor drive. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2000,47(3):737-749.
  • 8Elman JL. Finding structure in time. Cognitive Science, 1990,14(2):179-211.
  • 9Pham DT, Liu X. Dynamic system modeling using partially recurrent neural networks. Journal of Systems Engineering,1992,2(2):90--97.
  • 10Pham DT, Liu X. Training of Elman networks and dynamic system modeling. International Journal of Systems Science, 1996,27(2):221 -226.

共引文献83

同被引文献22

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部