期刊文献+

基于神经网络与证据理论的入侵检测系统 被引量:6

Intrusion detection system framework based on combination of ANN and evidence theory
下载PDF
导出
摘要 针对基于神经网络(ANN)的入侵检测系统(IDS)难以得到足够丰富的实测样本这一问题,引入信息融合的观点,提出了一个基于神经网络与证据理论相结合的入侵检测系统模型。模型的神经网络模块是由自组织映射网络(SOM)和反向误差传播网络(BP)合成的,并将BP 网络的输出作为证据,输入到证据理论模块。通过证据理论模块的信息融合,降低了虚警率,提高了检测率。 InformationfusionisintroducedandanewIDSframeworkbasedonthecombinationofANNandevidencetheoryisproposed. The new framework is to solve the existing problem that ANN based IDS can't easily acquire enough abundant samples. The neural module of this frameworkconsistsof two parts: Self-organizingmaps (SOM) network and error back propagation (BP) network. The output of the BP network is apiece of evidence, which is the input of evidence theory module. Through information fusion of the evidence theory module, false positives are decreased and the detection rate is improved.
出处 《计算机工程与设计》 CSCD 北大核心 2005年第3期697-698,734,共3页 Computer Engineering and Design
  • 相关文献

参考文献8

  • 1李鸿培,王新梅.基于神经网络的入侵检测系统模型[J].西安电子科技大学学报,1999,26(5):667-670. 被引量:41
  • 2宋歌,闫巧,喻建平.神经网络在异常检测中的应用[J].计算机工程与应用,2002,38(18):146-148. 被引量:7
  • 3Anderson, James P. Computer security threat monitoring and surveillance [EB/OL]. http://csrc.nist.gov/publications/history/ande80.pdf.
  • 4Denning, Dorothy E. An intrusion detection model [J]. IEEE Transaction on Software Engineer on Software Engineering,1987, SE-13(2):222-232.
  • 5Frank, Jeremy. Artificial intelligence and intrusion detection:Current and future directions[C]. Proceedings of the 17th National Computer Security Conference, 1994.
  • 6Cannady J. Artificial neural networks for misuse detection[C].Proceedings of the 1998 National Information Systems Security Conference(NISSC'98), Arlington VA, 1998.443-456.
  • 7Common intrusion detection framework[EB/OL].http://www.isi.edu/gost/cidf/.
  • 8袁春阳,柴乔林,柳忠光.网络入侵检测系统中网络实时监听程序的设计与实现[J].计算机工程,2002,28(10):150-152. 被引量:7

二级参考文献7

共引文献52

同被引文献56

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部