期刊文献+

对偶空间上的弱^*连续算子半群 被引量:4

WEAK* CONTINUOUS OPERATOR SEMIGROUPS ON DUAL SPACE
下载PDF
导出
摘要 在线性赋范空间的对偶空间上引入了弱*连续算子半群及其生成元的概念,给出了弱*连续算子半群的一些性质,通过生成元及其有关性质对弱*连续算子半群进行了系列刻画,并给出了一类弱*连续算子半群的生成定理。 Weak~* continuous operator semigroup and its infinitisimal generator are introduced on the dual of a normed space;Some relevant properties of weak~* continuous operator semigroups are given;Using generator,Weak~* continuous operator semigroups are characterized;Furthermore,the generating theorem of a Weak~* continuous operator semigroup is also obtained.
出处 《南昌大学学报(理科版)》 CAS 北大核心 2005年第1期38-41,49,共5页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(10071048) 陕西省自然科学研究计划项目(2002A02)
关键词 赋范空间 对偶空间 弱^*连续算子半群 无穷小生成元 normed space dual space weak~* continuous operator semigroups infinitisimal generator
  • 相关文献

参考文献7

  • 1姚景齐.指数有界C-半群的共轭半群[J].系统科学与数学,1999,19(3):319-322. 被引量:7
  • 2Goldstein J.A Semigroups of Linear Operators and Application[M].Oxford University Press,Oxford,1985.
  • 3Pazy A.Semigroups of Linear Operators and Applications to Partial Diffrential Equations[M].Spring-verlag,New York,1983.
  • 4Ahmed N. U Semigroup Theory with Applications to Systems and Control[M].Longman Scientific and Technical,Essex,England,1991.
  • 5Davies E B and Pang M M H.The Cauchy Problem and a Generalization of the Hille-Yosida Theorem[J],Proc.,London Math.Soc.,1987,55(1):180-208.
  • 6Conway J B.A Course in Functional Analysis[M].Spring-verlag,New York,1985.
  • 7Zou X.A Generation Theorem for Local C-Semigroups[J].Journal of Nanjing University,1998,34(3):406-411.

二级参考文献3

  • 1雷岩松 郑权.指数有界C-半群的对偶半群[J].应用数学(增刊),1993,6:154-158.
  • 2雷岩松,应用数学,1993年,6卷,增刊,154页
  • 3Davies E B,Proc London Math Soc,1987年,55卷,3期,181页

共引文献6

同被引文献25

  • 1陈文忠.C-无穷小生成元的表示式[J].厦门大学学报(自然科学版),1993,32(2):135-140. 被引量:22
  • 2Coway J B. A Course in Operator Theory[M]. 1st ed. American Mathematical Society Providence, Rhode Island, 2000,86.
  • 3Da Prato G. Semigruppirego lazizzabili [J]. Ricerehe Mat, 1966 (15) : 223-248.
  • 4Davies E B, Pang M M H. The cauchy problem and a generalization of the hille-yosida theorem[J]. Proc, London Math Soc, 1987, 55 (1) : 180-208.
  • 5Zheng Q, Strongly continuous semigroups of linear operators [M]. Wuhan: Huazhong University of Science and Technology Press, 1994: 1-33.
  • 6Pazy A. Semigroups of linear operators and applications to partial diffrential equations IM]. New York: Spring-Verlag, 1983.
  • 7Zou X A. Generation theorem for local C-semigroups [J]. Journal of Nanjing University, 1998, 34 (3):406-411.
  • 8Tanaka N. Miyadera I,Expontially bounded C-semigroups and integrated semigroups[M]. Tokyo J Math, 1989,12(1) :99-115.
  • 9PAZY A. Semigroups of Linear Operators and Applications to Partial Diffrential Equations [ M 1. New York : Spring-Verlag,1983.
  • 10ZOU X A. Generation theorem for local C-semigroups [ J ]. Journal of Nanjing University, 1998,34 (3) :406-411.

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部