期刊文献+

遗传算法在反应器网络综合中的应用 被引量:4

Application of genetic algorithm to reactor networks synthesis
原文传递
导出
摘要 反应器网络综合问题一般都是复杂的非线性规划问题,遗传算法作为一种启发式全局优化方法,具有计算简单、功能性强的特点。本文将全局优化遗传算法应用到反应器网络综合中以避免传统的优化方法很难求得其全局最优解的缺点。本文首先分析了几种反应器的替代结构,以及在此基础上建立的通用的全混流反应器(Continuous Stirred Tank Reactor,CSTR)网络结构模型;然后采用全局优化遗传算法以及传统的数学优化工具GAMS(General Algorithm Model System)分别对该模型进行求解。实例研究表明,遗传算法可有效地求解此类反应器网络综合问题,且其计算结果优于传统优化方法的结果。 Reactor networks synthesis is generally a nonlinear programming problem which is difficult to obtain the global optimal results. Genetic algorithm can find global optimal results more easily than traditional methods on the problem. In this paper, the substituted structures for several kinds of reactors and the general reactor networks model based on CSTR were studied. Then genetic algorithm and GAMS were used respectively to solve the CSTR networks model. The results of a typical example show that genetic algorithm is better than GAMS in terms of optimum value. Also compared with the literature the proposed approaches can give better results. Thus the genetic algorithm is an effective method for solving the reactor networks model based on CSTR.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2005年第3期173-177,共5页 Computers and Applied Chemistry
基金 国家自然科学基金(20276032) 山东省自然科学基金(Y2003B02)
关键词 遗传算法 反应器网络 CSTR genetic algorithm reactor network CSTR
  • 相关文献

参考文献11

  • 1Brooke A, Kendfick D and Meeraus A. GAMS: A User's Guide.Redwood City, CA:Science Press, 1988.
  • 2Jenkins WM. Structural optimization with the genetic algorithm. The Structural Engineering, 1991, 28 (7).
  • 3Waiters GA, et ai. Optimal layout of the networks using genetic algorithms. Eng Opt, 1993, 22.
  • 4Goldberg DE. Genetic algorithms in search, optimization and machine learning, Addison-Wesley, 1989.
  • 5Davis L. Handbook of Genetic Algorithm. New York: van Nonstrand Reinhold, 1991.
  • 6Shehzaad Kauchali and William Rooney C, et al. Linear programming formulations for attainable region analysis. Chemical Engineering Science, 2002, 57:2015 - 2028.
  • 7Balakrishna S and Biegler L. Constructive targeting approach for the synthesis of isothermal reactor networks. Industrial and Engineering Chemistry Research, 1992, 31 (9) :300 - 312.
  • 8花开玲,李有润,胡山鹰,沈静珠.反应器网络综合方法研究[J].计算机与应用化学,2002,19(1):177-181. 被引量:4
  • 9Zhou M and Sun SD. Theory and Application of Genetic Algorithm.Beijing: National Defenee Industory Publishing Company, 1999:45.
  • 10Kokossis AC and Flouda CA. Optimization of complex reactor networks--I. Chemical Engineering Science, 1990, 45 ( 3 ) : 595 -614.

二级参考文献9

  • 1Octave Levenspiel.Reaction Engineering.3rd ed.New York:John Wiley & Sons,1999.
  • 2Chitra S P,Govind R.Synthesis of optimal serial reactor structures for homogeneous reactions.Part I:isothermal reactors.AIChE J,1985,31(2):177-184.
  • 3Schweiger C A,Floudas C A.Optimization framework for the synthesis of chemical reactor networks.Industrial Engineering Chemical Research,1999,38(3):744-7661.
  • 4Glasser D,Hildebrandt D,Crowe C.A geometric approach to steady flow reactors:the attainable region and optimization in concentration space.Industrial Engineering Chemical Research,1987,26(9):1801-1810.
  • 5Balakrishna S,Biegler L T.Constructive targeting approaches for the synthesis of chemical reactor networks.Industrial Engineering Chemical Research,1992,31(1):300-312.
  • 6Lakshmanan A,Biegler L T.Synthesis of optimal chemical reactor networks.Industrial Engineering Chemical Research,1996,35(4):1344-1353.
  • 7Ralph Jocobs,Wouter Jansweijer.A knowledge-based system for reactor selection.Computers & Chemical Engineering,2000,24(8):1781-1801.
  • 8Achenie L K E,Biegler L T.Developing targets for the performance index of a chemical reactor network:isothermal systems.Industrial Engineering Chemical Research,1988,27(10):1811-1821.
  • 9Hua K L,Li Y R,Hu S Y,et al.A three-distribution-parameter new general model for reactor network synthesis.Computers & Chemical Engineering,2000,24(2):217-223.

共引文献3

同被引文献16

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部