摘要
具有转向点的奇摄动方程的求解是一个较难处理的问题. 利用 Liourille Green变换将二阶线性奇摄动方程转化为Airy方程, 并用Bessel函数表示Airy方程的通解.得到了一类具有转向点的奇摄动特征值问题的特征函数及特征值.
Solving singularly perturbed equation with turning point is a difficult problem. The Airy equation are obtained form the linear singularly perturbed equations of second order by using the Liourille-Green transformation. The general solution of Airy equation is achieved by using the Bessel function. Thus, we get the eigenfunctions and eigenvalues of a class of the singularly perturbed eigenvalue problem with the turning point.
出处
《安徽工程科技学院学报(自然科学版)》
CAS
2005年第1期18-20,共3页
Journal of Anhui University of Technology and Science
基金
浙江省教育厅科研基金资助项目(20030594)