期刊文献+

基于人工神经网络的昆虫鸣声识别 被引量:9

Identification of Insect Acoustical Signals Based on Artificial Neural Network
下载PDF
导出
摘要 以常见的 7 种飞虱雄虫求偶鸣声信号的频率峰值作为输入向量,用人工神经网络来识别它们的鸣声,平均识别率达 90.6%。人工神经网络可以用于昆虫鸣声识别。 Artificial neural network (ANN) could be applied in identification of insect acoustic signals. Here male courtship signals in seven species of planthoppers were recorded and analyzed. The results showed that their frequencies were overlapped. However, these signals could be identified by ANN and the average accuracy of identification was 90.6% if their peak frequencies were as input vectors. But they couldn’t be distinguished if their waveforms were as input characters. Therefore, selecting appropriate input characters were important when using ANN for identifying insect acoustical signals.
出处 《Entomotaxonomia》 CSCD 北大核心 2005年第1期19-22,共4页 昆虫分类学报(英文)
基金 国家自然科学基金项目(30070427) 植物病虫害生物学国家重点实验室开放基金资助
关键词 人工神经网络 飞虱 鸣声 识别 artificial neural network planthopper acoustical signal identification
  • 相关文献

参考文献5

二级参考文献8

共引文献49

同被引文献157

引证文献9

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部