摘要
成矿流体可以划分为地表流体与内部流体,后者又可进一步细分为原生流体和再生流体两类。原生流体、再生流体与地表流体三者起因不一,成矿作用各异,输运方式、活动范围、化学性质也有差异。重大地质事件(板块俯冲或地幔柱上涌等)引发的盆-山转换、地壳变形、岩浆侵入等系列事件,促使了原生流体与再生流体的产生,为大规模成矿流体系统提供了能量支持与活动空间。在大型成矿流体系统中,原生流体、再生流体与地表流体相互间不同程度地混合,共同参与成矿作用,形成了超大型矿床或成矿区带。流体系统演化过程中的构造—流体耦合作用、成矿流体超临界、不混溶、流体混合等独特的物理化学作用是成矿元素聚集与沉淀的重要基础。由于成矿流体系统的形成与演化是一个物理—化学作用耦合的复杂过程,所以其研究亦是复杂性科学与地球科学多学科交叉、定性概括和定量模拟及物理模拟多手段并用的综合探索。
The ore-forming fluids can be classified into three types: primary fluids, secondary fluids and surface waters. Not only the originations of these fluids are different, but also the metallogenic process, fluids transport mode, range of action and chemical properties are variant. Giant geological events,for example, plate subduction and mantle plume upwelling,initiated the primary fluids, and resulted in basin-mountain transition, crustal deformation and magmatic intrusion, which accelerated the action of secondary fluids. Different types of fluids and their coactions in mineralization were mixed together to form the large ore-forming fluid system. The evolution of the fluid system is very complex for fluid physical transportation process consists of both tectonic-fluid coupling process and mixing and immixing of variant fluids, and the special physicochemical properties of metallogenic fluid are significant in the enrichment and deposition of mineralized elements. Due to the physical-chemical coupling process of ore-forming fluid system, the multi-angle and synthetic studies, including qualitative generalization, numerical simulation and physical analogue, should be carried out.
出处
《地质科技情报》
CAS
CSCD
北大核心
2005年第1期49-54,共6页
Geological Science and Technology Information
基金
教育部科学技术研究重点项目(03178)
国家自然科学基金重点资助项目(40172036)
教育部跨世纪人才基金资助项目
关键词
成矿流体系统
流体演化
数值模拟
物理模拟
ore-forming fluid system
fluid evolution
numerical simulation
physical analogue