期刊文献+

阳极更换及铝液高度对电解槽内铝液流速场的影响 被引量:5

Effect of anode change and metal height on flow field of metal pad in aluminum reduction cells
下载PDF
导出
摘要 采用k-ε二方程法和SIMPLE算法对190 kA大型预焙阳极铝电解槽分别在槽况较为理想、更换阳极、炉底存在结壳、不同铝水平以及阳极长包情况下的铝液流速场进行了三维计算。结果表明: 电解槽中金属铝液主要表现为水平流动, 但在槽边部也表现出明显的垂直方向流动; 在理想槽况下, 铝液中最大水平流速为11.9 cm/s, 平均流速为3.5 cm/s; 换极、炉底结壳和阳极长包时, 在相应位置的铝液中出现显著的环行流动, 铝液流动形式发生变化; 换极时铝液最大流速(为13.1 cm/s)较理想槽况有较大增加, 但平均流速变化不大; 炉底存在较小结壳时, 铝液流速增加不大; 阳极长包时, 铝液流速则大大增加, 最大水平流速达24 cm/s, 而当铝水平适当降低, 铝液流动形式和流速未发生明显变化。 The k-ε two-equation and SIMPLE calculation methods were adopted to calculate the flow field of 190kA prebaked anode aluminum reduction cells under ideal condition, anode change (AC), different metal height, bottom ridge and anode spikes. The results show that the flow of metal pad is horizontal, but the flow of ledge is vertical. Under normal cell status, the maximum horizontal flow speed of metal is 11.9cm/s, the average flow is 3.5cm/s. While under AC, bottom ridge and anode spikes, circular flow occurs at corresponding locations. The maximum flow speed of AC increases than that of the normal cell status, and the maximum flow speed of AC is (13.1cm/s). While there is small ridge on the bottom of cell, the flow of metal increases unobviously. The flow of metal increases under anode spike, and the maximum flow is 24cm/s. Lower metal height has little effect on both flow pattern and flow speed.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2005年第3期485-489,共5页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学基金资助项目(50274031)
关键词 铝电解槽 换极 结壳 长包 流速场 aluminum reduction cells anode change ridge spike flow field
  • 相关文献

参考文献18

  • 1戚喜全,冯乃祥.铝电解槽阴极三维电位场数值计算与分析[J].材料与冶金学报,2003,2(2):103-107. 被引量:8
  • 2Robl R F. Metal flow dependence on ledging in hallheroult cells [A]. Light Metals [C]. Warrendale,Pennsylvania: TMS, 1983. 449 - 456.
  • 3Arita Y, Ikeuchi H. Numerical calculation of bath and metal convection pattern and their interface profile in Al reduction cells[A]. Light Metals[C]. Warrendale,Pennsylvania: TMS, 1981. 357-371.
  • 4Tarapore E D. The effect of some operating variables on flow in aluminum reduction cells[A]. Light Metals[C]. Warrendale, Pennsylvania: TMS, 1983. 341-355.
  • 5Segatz M, Vogelsang D, Droste C, et al. Modelling of transient magnetro-hydrodynamic phenomena in hallhaeroult cells [A]. Light Metals [C]. Warrendale,Pennsylvania: TMS, 1993. 361-368.
  • 6Potocnik V, Larrcosche F. Comparision of measured and calculated metal pad velocities for different prebake cell designs[A]. Light Metals[C]. Warrendale, Pennsylvania: TMS, 2001. 419 - 425.
  • 7El-Demerrdash M F, Khail E E, Ahmed H A, et al.Modelling of metal topography and flow regimes in working prebaked aluminum pot[A]. Light Metals[C]. Warrendale, Pennsylvania: TMS, 1993. 369-374.
  • 8ZHOU Ping, ZHOU Nai-jun, MEI Chi, et al. Numerical calculation and industrial measurements of metal pad velocities in hall-heroult cells [J]. Trans Nonferrous Met Soc China, 2003, 13(2): 208 - 212.
  • 9岳林,梅炽.现代铝电解槽的电磁流动 (Ⅰ)基本特点与控制方程[J].中南矿冶学院学报,1991,22(6):636-643. 被引量:2
  • 10梁学民 于家谋.我国280 kA超大型铝电解槽开发工业实验[J].轻金属,:54-58.

二级参考文献42

共引文献41

同被引文献68

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部