摘要
提出了一种高效率的基于部分基础解向量的区域分解算法(PBSV DDM).它首先求出关于连接边界上节点的部分基础解向量,在迭代过程中,只需要对部分基础解向量作简单的线性组合就可以获得整个求解区域的最终解,极大地提高了计算效率,降低了存储量.PBSV DDM不但适合于快速高效地计算任意电大尺寸柱体的电磁散射,还特别适合于求解具有几何重复性特征的结构,如天线阵列、有限周期频率选择表面、PBG EBG等的电磁仿真问题.数值算例验证了该方法的准确性和有效性.
A new highly efficient domain decomposition method based on the partial basic solution vectors (PBSV-DDM) is presented for solving arbitrary electrically large 2D electromagnetic scattering problems. Different from the traditional domain decomposition method (DDM) by which one needs to solve matrix equations in each sub-domain during every iteration till convergence, which is considerably inefficient and time-consuming,the matrix equations in the new PBSV-DDM algorithm could be solved for a set of standard orthogonal excitation vectors to get the partial basic solutions. Then the solution in each sub-domain is obtained only by a simple vector summation operation in every iteration procedure. Obviously, the computational efficiency would be greatly improved.The validity and computational efficiency of PBSV-DDM have been verified by numerical examples.
出处
《应用科学学报》
CAS
CSCD
北大核心
2005年第2期122-125,共4页
Journal of Applied Sciences
基金
国家863重大项目(2002AA123031)
国家杰出青年科学基金资助项目(60225001)