期刊文献+

一类非线性周期时滞系统的周期解 被引量:5

PERIODIC SOLUTIONS OF PERIODIC NONLINEAR DELAY DIFFERENTIAL SYSTEM
原文传递
导出
摘要 一类非线性周期时滞系统的周期解陈伯山(湖北师范学院数学系,黄石435002)PERIODICSOLUTIONSOFPERIODICNONLINEARDELAYDIFFERENTIALSYSTEM¥CHENBOSHAN(DepartmentofMath... In this paper, a periodic nonlinear delay differential system for describing the medels of epidemic is studied, and the existence, uniqueness and asymptotic behavior of the periodic solutions are discussed by using the theory of monotone operators.
作者 陈伯山
出处 《应用数学学报》 CSCD 北大核心 1994年第4期541-550,共10页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金
  • 相关文献

同被引文献24

  • 1陈伯山.混合单调半流与泛函微分方程的稳定性[J].数学学报(中文版),1995,38(2):267-273. 被引量:4
  • 2Zhao Xiaoqiang,Ann Differ Equ,1991年,7卷,2期,250页
  • 3Hirch M W. Systems of Differential Equations which are Competive or Cooperative, I: Limit Sets. SIAM. J. Math. Anal., 1982, 13:167-179
  • 4Hirch M W. Stability and Convergence in Strogly Monotone Dynamical Systems. Reine. Angew. Math., 1988, 383:1-53
  • 5Hirch M W. The Dynamical Systems Approach to Differential Equations. Bull. Amer. Math. Soc., 1984, 11: 1-64.
  • 6Walter W. Differential and Integral Inequalities. Berlin, Heidelberg, New York: Springer-Verlag, 1970
  • 7Smith M L. Cooperative Systems of Differential Equations with Concave Nonlinearities. Nol. Anal., 1986, 10:1037-1052
  • 8Smith M L. Periodic Competive Differential Equations and Discrete Dynamics of Competive Maps. J. Diff. Equs., 1986, 64:165-193
  • 9Gopalsamy K. Globle Asymptotic Stability in a Periodic Lotka-Volterra System. J. Austral. Math. Soc. (Series B), 1985, 27:66-72
  • 10Tineo, Alvarez C. A Different Consideration about the Species Problems. J. Math. Anl. Appl., 1991, 159:44-50

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部