摘要
设H=(E1,E2,…,Em)是集合X上的一个超图,一个1-1映射f∶X→{1,2,…,|X|}称为H的一个标号.对H的任一标号f,BS(H,f)=∑E∈Hmax{|f(u)-f(v)|;u,v∈E}称为超图H的关于标号f的带宽和,BS(H)=min{BS(H,f)|f是超图H的标号}称为H的带宽和.论文研究图带宽和与其对偶超图的带宽和这两个参数间的关系.
Given a hypergraphy H=(E_1,E_2,…,E_m),where its vertex set is X with (|X|=n.) A one-to-one mapping f:X→{1,2,…,|X|} is called a labelling of H.For any labelling f of H,BS(H,f)=∑E∈Hmax{|f(u)-f(v)|;u,v∈E} is called the bandwidth sum of a labelling f of H,BS(H)=min{BS(H,f)|f is a labelling of H} is called the bandwidth sum of H.In this paper,the relationship between bandwidth sums of some special graphs and their dual hypergraphs is given.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2005年第1期103-110,共8页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金(10471131)
浙江省自然科学基金(M103094
Y604167)
关键词
带宽和
对偶超图
标号
bandwidth sum
dual hypergraph
labelling