期刊文献+

发酵过程的多模型融合建模算法 被引量:3

Multi model Fusion Modeling Algorithms for Fermentation Process
下载PDF
导出
摘要 提出了利用多模型融合技术进行发酵过程建模的新方法, 该方法能够将在线参数和离线参数同时用于建模中. 首先给出了多模型融合建模算法框架, 并描述了基于自适应模糊神经网络和模糊推理技术两个参与融合的子模型的建立方法. 采用三个非线性函数分别运用GMDH PTSV算法、傅里叶神经网络和多模型融合建模算法进行建模精度比较. 最后给出了多模型融合建模算法在青霉素发酵过程中应用的结果. A new algorithm, which is based on multi model fusion technique to construct the model of fermentation process, is proposed. The algorithm can simultaneously use on line and off line parameters to construct models. Firstly, multi model fusion modeling algorithms are designed, the modeling method of two sub models based on adaptive fuzzy neural networks and fuzzy inference are described. Secondly, for three nonlinear testing functions, GMDH PTSV, Fourier neural network and multi model fusion modeling algorithms, are used to construct models respectively. Finally, results of the multi model fusion modeling algorithms for penicillin fermentation process are given.
出处 《信息与控制》 CSCD 北大核心 2005年第2期172-176,187,共6页 Information and Control
关键词 数据融合 自适应模糊神经网络 模糊推理 发酵过程 建模 data fusion adaptive fuzzy neural network fuzzy inference fermentation process modeling
  • 相关文献

参考文献8

二级参考文献90

  • 1萧德云 莫以为.混合系统的验证与控制综合[A]..第21届中国控制会议论文集[C].杭州: 浙江大学出版社,2002.635-641.
  • 2Hopkins L, Iart P, NeweU R. Using the flexibility index to compare batch and continuous activated sludge processes [J]. Water Science and Technology, 2001,43 (3) :35 - 43.
  • 3Deckhom T, Dichfl N, Kayser R. Comparative investigations on COD removal in sequencing batch reactor and continuous flow plants [ J ]. Water Science and Technology, 2001,43 ( 3 ) : 45-52.
  • 4Mace S, Mata A. Utilization of SBR technology for wastewater treatment, an overview [J]. Industrial Engineering Chemical Research, 2002,41 (23) :5539 -5553.
  • 5Stephons H, Stensel H. Effect of operating conditions of SBR processes [ J ]. Water Environmental Research, 1998,70 ( 3 ) :362 - 369.
  • 6Bemardes R, Klapwijk A. Biological nutrient removal in a sequencing batch reactor treating domestic wastewater [ J]. Water Science and Technology, 1996, 33 (3) :29 - 38.
  • 7Arran N, Wilderer P, Orhon D, et al. The mechanism and design of sequencing batch reactor systems for nutrient removal-the state of art [J]. Water Science and Technology, 2001,43 (3):53 -60.
  • 8Teichgraber B, Sehreff D, Ekkerlein C, et al. SBR technology in Germany- an overview [J]. Water Science and Technology,2001,43 (3) :323 -330.
  • 9Vassos T. Future directions in instrumentation control and automation in water and wastewater industry [J]. Water Science and Technology, 2001,43(3) :191 - 194.
  • 10Marsili Libelli S, Ratini P, Spagni A, et al. Implementation,study and calibration of a modified ASM2d for the simulation of SBR processes [ J ]. Water Science and Technology, 2001,43(3) :69 -76.

共引文献72

同被引文献25

  • 1王春林,周昊,周樟华,凌忠钱,李国能,岑可法.基于支持向量机的大型电厂锅炉飞灰含碳量建模[J].中国电机工程学报,2005,25(20):72-76. 被引量:98
  • 2杨延西,刘丁,辛菁.基于LS-SVM的机器人逆运动学建模[J].系统仿真学报,2006,18(5):1260-1262. 被引量:7
  • 3袁平,毛志忠,王福利.基于多支持向量机的软测量模型[J].系统仿真学报,2006,18(6):1458-1461. 被引量:18
  • 4徐勇,池艳广.样本典型性分析与线性鉴别分析[J].计算机工程与应用,2007,43(13):163-166. 被引量:3
  • 5Joseph B, Brosilow C B. Inferential control of processes: Part I. Steady state analysis and design[J]. AIChE Journal, 1978, 24(3): 485-492.
  • 6Brosilow C B, Tong M. Inferential control of processes: Part II. The structure and dynamics of inferential control systems[J]. AIChE Journal, 1978, 24(3): 492-500.
  • 7Joseph B, Brosilow C B. Inferential control of processes: Part III. Construction of optimal and suboptimal dynamic estimators[J]. AIChE Journal, 1978, 24(3): 500-509.
  • 8Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293- 300.
  • 9Li X, Cao G Y, Zhu X J. Modeling and control of PEMFC based on least squares support vector machines[J]. Energy Conversion and Management, 2006, 47(7-8): 1032-1050.
  • 10Vong C M, Wong P K, Li Y R Prediction of automotive engine power and torque using least squares support vector machines and Bayesian inference[J]. Engineering Applications of Artificial Intelligence, 2006, 19(3): 277-287.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部