期刊文献+

Modeling and simulation of ocean mining subsystem based on virtual prototyping technology 被引量:6

Modeling and simulation of ocean mining subsystem based on virtual prototyping technology
下载PDF
导出
摘要 According to the virtual prototyping technology and the theory of dynamics of multi-rigid-body system, a virtual prototyping of ocean mining vehicle was constructed by using 3-dimensional entity modeling software ((Pro/E),) automatic dynamic analysis of mechanical systems(ADAMS) and advanced visual software(AVS). After 32 new modules were developed with C++ at AVS platform, the interface problems of the 3 types of software were solved effectively and a visual environment for ocean mining subsystem was constructed. Based on the similarity (theory) and similarity experiments, the validity and reliability of the virtual prototyping were verified. By using the (constructed) virtual prototyping, the relevant parameters, such as cutting depth, rotation speed of roller,marching speed of mining vehicle can be adjusted one by one. After repeatable virtual tests and analysis its corresponding dynamic characteristics, the structure parameter of mining vehicle and the parameter of mining process can be optimized fast and accurately. The experiment and simulation results show that, under the controlled mining parameters, 4 function expressions between the average force of single pick,average torque,average cutting power,energy consumption ratio and cutting depth are obtained. The maximum force of a single pick is less than (11090N) and the maximum torque of the roller is less than 3600N·m. According to the virtual prototyping technology and the theory of dynamics of multi-rigid-body system, a virtual prototyping of ocean mining vehicle was constructed by using 3-dimensional entity modeling software ((Pro/E),) automatic dynamic analysis of mechanical systems(ADAMS) and advanced visual software(AVS). After 32 new modules were developed with C++ at AVS platform, the interface problems of the 3 types of software were solved effectively and a visual environment for ocean mining subsystem was constructed. Based on the similarity (theory) and similarity experiments, the validity and reliability of the virtual prototyping were verified. By using the (constructed) virtual prototyping, the relevant parameters, such as cutting depth, rotation speed of roller,marching speed of mining vehicle can be adjusted one by one. After repeatable virtual tests and analysis its corresponding dynamic characteristics, the structure parameter of mining vehicle and the parameter of mining process can be optimized fast and accurately. The experiment and simulation results show that, under the controlled mining parameters, 4 function expressions between the average force of single pick,average torque,average cutting power,energy consumption ratio and cutting depth are obtained. The maximum force of a single pick is less than (11090N) and the maximum torque of the roller is less than 3600N·m.
出处 《Journal of Central South University of Technology》 2005年第2期176-180,共5页 中南工业大学学报(英文版)
基金 Project(50474052) supported by the National Natural Science Foundation of China
关键词 ocean mining virtual prototyping VISUALIZATION similarity experiment 海底采矿 虚拟样机 可视化 相似试验
  • 相关文献

同被引文献76

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部