期刊文献+

频繁项集挖掘技术述评 被引量:2

Commentary About Technology of Mining Frequent Itemsets
下载PDF
导出
摘要 阐述了关联规则挖掘对象事务数据库的特性, 对关联规则挖掘的关键问题频繁项集的几种挖掘方法:Apriori算法、最大频繁项集的挖掘算法、基于频繁链表的频繁项集挖掘算法作了分析研究。 The characteristic of transaction database on which association rule is mined was debated in this paper, Mining frequent set is key problem of association rule mining, some of its algorithms such as Apriori algorithms, algorithms of mining maximum frequent set, algorithms of mining frequent set based on the frequent link were analyzed and studied, in the end we point out the channel of improving the algorithms of mining frequent set .
作者 袁鼎荣 李波
出处 《广西民族学院学报(自然科学版)》 CAS 2005年第1期86-90,共5页 Journal of Guangxi University For Nationalities(Natural Science Edition)
基金 广西高校科研基金资助项目(0448093) 广西师范大学项目基金资助
关键词 事务数据库 频繁项集挖掘算法 关联规则 数据挖掘 transaction database algorithm of mining frequent itemset association rule data mining
  • 相关文献

参考文献8

  • 1路松峰,卢正鼎.快速开采最大频繁项目集[J].软件学报,2001,12(2):293-297. 被引量:113
  • 2袁鼎荣,张师超.基于频繁链表的频繁集的挖掘算法[J].计算机科学,2003,30(7):165-166. 被引量:5
  • 3Lin, Dao-I,Kedem,Z.M.Pincer-Search: A new algorithm for discovering the maximun frequent set[A].In:Schek.H.J.,Saltor,F.,Ramos,I.,et al,eds. Proceedings of the 6th European Conference on Extending Database Technology[C]. 1998.105-119.
  • 4Li Shen,Hong Shen,Ling Cheng. New algorithms for efficient mining of association rules[J].Information Sciences, 1999,118(4):251-268.
  • 5Chengqi zhang ,shichao zhang .Association rule mining model and algorithms[M]. Springer,2002.47-83 .
  • 6C zhang and S zhang.Collecting quality data for database mining[A].Proceedings of the 14th Australian joint conference on artificial intelligence[C]. 2001.593-556.
  • 7S zhang and C zhang. Mining small database by collecting knowledge[A].Proceedings of DASFAA01[C].2001.174-175.
  • 8Rakesh Agrawal, Ram akrishnan Srikant. Fast algorithms for mining association rules[A].Proceedings of the 20th International Conference on Very Large Databases ,Santiago ,Chile ,September 1994.487-499.

二级参考文献8

  • 1苏毅娟,严小卫.一种改进的频繁集挖掘方法[J].广西师范大学学报(自然科学版),2001,19(3):22-26. 被引量:10
  • 2Lin, Dao-I,Kedem Z M. Pincer-Search: a new algorithm for discovering the maximun frequent set. In : Schek. H. J. , Saltor, F. ,Ramos,I. ,et al,eds. Proc. of the 6th European Conf. on Extending Database Technology. Heidelberg: Springer-verlag, 1998. 105-119.
  • 3Fayyad U, Stolorz P. Data mining and KDD: Promise and challenges. Future Generation Computer Systems, 1997,13 : 99- 115.
  • 4Shen Li, Shen Hong, Cheng Ling. New algorithms for efficient mining of association rules [J]. Information Sciences, 1999, 118(4) :251-268.
  • 5Lin Dao I,Proc the 6th European Conference on Extending Database Technology,1998年,105页
  • 6Agrawal R,Proc the 11th Inter Conference on Data Engineering,1995年,3页
  • 7路松峰,卢正鼎.快速开采最大频繁项目集[J].软件学报,2001,12(2):293-297. 被引量:113
  • 8王晓峰,王天然.基于双空间搜索的频繁项挖掘方法[J].计算机科学,2002,29(4):55-60. 被引量:7

共引文献114

同被引文献9

  • 1秦亮曦,李谦,史忠植.基于排序FP-树的频繁模式高效挖掘算法[J].计算机科学,2005,32(4):31-33. 被引量:13
  • 2唐德权,王绪峰,朱林立,谢文君.一种快速挖掘频繁项集算法的研究[J].湖南科技学院学报,2006,27(5):117-120. 被引量:3
  • 3Agrawal R,Srikant S.Fast algorithms for mining association rules[C].In VLDB'1994,487-499.
  • 4Lent B,Swami A,Widom J.Clustering associations rules[C].InICDE'1997,220-231.
  • 5[加]HanJiawei.KamherM.数据挖掘概念与技术.机械工业出版社,2001:158-161.
  • 6Agrawal R, Srikant S, Fast algorithms for mining association rules. In VLDB' 1994 : 487-499.
  • 7Lent B,Swami A,Widom J,Clustering associations rules, InlCDE' 1997: 220-231.
  • 8HanJiawei MichelineKambe.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 9http://www.ics.uci.edu/-mlearn/MLRepository.html.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部