期刊文献+

基于RBF神经网络NURBS的散乱数据点自由曲面重建 被引量:5

Approach of NURBS Free-form Surface Reconstruction from Scattered Data Based on RBFNN
下载PDF
导出
摘要 根据径向基函数(RBF)神经网络可以用任意精度逼近任何非线性函数,以及强大的抗噪、修复能力等优点,该文采用RBF神经网络模型进行自由曲面重构,建立了适合曲面重构的径向基函数网络模型。进行了理论分析,并在非均匀有理B样条(NURBS)曲面上做了仿真试验。结果表明:该模型不仅能够有效地逼近不完善的、带有噪声的曲面,而且学习速度很快,提高了对破损、不完全曲面重建的效率和精度,得到的曲面光顺性好。 Based on RBFNN' s advantages of approaching any no -linear function by arbitrary precision,powerful antinoise and the capability of repair and so on,this paper adopts RBFNN model to reconstruct free-form surface,and constitutes RBFNN model fitting to surface reconstruction.The paper makes theoretical analysis and makes experiment on the NURBS surface.The result indicates that this model not only can efficiently approach the surface which is not perfect and has noise,but also the speed of learning is very quick.This can improve efficiency and precision of dirty,imperfect surface reconstruction,and the smooth of surface which is got is good.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第11期66-69,共4页 Computer Engineering and Applications
基金 北京市教育委员会项目(编号:KM200410028013)
关键词 逆向工程 曲面重构 非均匀有理B样条 神经网络 径向基函数 Reverse Engineering,surface reconstruction,NURBS,Neural Network,RBF
  • 相关文献

参考文献8

  • 1高宏峰,孙海涛,张安年.遗传神经网络及其在非线性系统辨识中的应用[J].洛阳工学院学报,1998,19(1):74-77. 被引量:6
  • 2王铠,张彩明.重建自由曲面的神经网络算法[J].计算机辅助设计与图形学学报,1998,10(3):193-199. 被引量:28
  • 3Bradley C,Vickers G W.Free-form surface reconstruction for machine vision rapid prototyping[J].Optical Engineering,1993;32(9):2191~2199.
  • 4GU P,YAN X.Neural network approach to the construction of freedom surface for reverse engineering[J].Computer Aided Designing,1995;27(1) :51~56.
  • 5Chen S,Cowan C F N,Grant P M.Orthogonal least squares learning algorithm for radial basis function network[J].IEEE Trans on Neural Networks, 1991; 2: 904~910.
  • 6Wang Yong-Ji,Tu Jian. Neural Network Control[M].Beijing:Mechanical Industry Publisher, 1998.
  • 7孙庆新 齐秉寅.数值分析(第一版)[M].东北工业学院出版社,1990..
  • 8J E Moody,C J Darken.Fast learning in networks of locally-tuned processing units[J].Neural Computation, 1989 ;1:281~294.

二级参考文献4

  • 1Gu P,Computer-Aided Design,1995年,27卷,59页
  • 2Chen Y D,ASME PED,1992年,62卷,113页
  • 3Lee Y S,Comput Ind,1991年,16卷,321页
  • 4焦李成,神经网络系统理论,1991年

共引文献29

同被引文献52

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部