期刊文献+

用于网上舆论观点抽取的几种方法 被引量:7

Several Algorithms Suggested for Extraction of Public Opinion from Internet
下载PDF
导出
摘要 互联网上的海量信息中包含和反映了人们的观点和舆论倾向。从网上相关信息中抽取出人们的主观意向如消费者的购买倾向、政治观点等已成为了Web研究的热点。提出了几种适用于实时抽取网上舆论观点的算法,主要描述了各算法分析观点的原理及分类过程。 The extremely large message flow on Internet comprises and reflects people’s standpoint and tendency of public opinion as well.To extract people’s subjective intent,such as customer purchase,public viewpoint from Internet has become highlight in Web research.This paper suggests several algorithms for the extraction of public opinion on Internet.It is mainly discussed in this paper about the algorithms’theory and process of analyzing respectively.
出处 《计算机应用研究》 CSCD 北大核心 2005年第5期256-257,260,共3页 Application Research of Computers
关键词 观点抽取 观点分析器 分类算法 Opinion Extraction Opinion Analysis Engine Classification Algorithm
  • 相关文献

参考文献6

  • 1黄萱菁 吴立德.独立于语种的文本分类方法[C]..2000International Conference on Multilingual Information Processing[C].,2000..
  • 2David D Lewis.Feature Selection and Feature Extraction for Text Categorization[C].Proceedings of Speech and Natural Language Workshop.Morgan Kaufmann:Defense Advanced Research Projects Agency,1992.212-217.
  • 3D D Lewis.Naive (Bayes) at Forty:The Independence Assumption in Information Retrieval[C].Chemnitz:Machine Learning:ECML-98,10th European Conference on Machine Learning,1998.4-15.
  • 4Dunja Mladenic.Feature Subset Selection in Text-Learning[C]. Chemnitz,Germany:European Conference on Machine Learning,1998.95-100.
  • 5Aidan Finn, Nicholas Kushmerick,et al.Classification and Domain Transfer for Information Fltering[C].Glasgow:Proc. of the European Colloquium on Information Retrieval Research,2002.353-362.
  • 6B Pang,L Lee,S Vaithyanathan.Thumbs up? Sentiment Classification using Machine Learning Techniques[C].Philadelphia:Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP),2002.79-86.

共引文献5

同被引文献52

引证文献7

二级引证文献197

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部