期刊文献+

绝热加速量热仪研究锂离子电池电解液热安全性 被引量:4

Application of accelerating rate calorimeter on thermal safety of lithium-ion battery electrolytes
下载PDF
导出
摘要 利用绝热加速量热仪对商业锂离子电池中常用的3种电解液进行了热分析实验,并根据测试结果评价了其热安全性。3种电解液的初始反应温度均在180~2 0 0℃之间;运用绝热理论模型,得到3种电解液热分解反应的活化能Ea 分别为(2 46.2 0 2±2 .866) k J·mol- 1 、(2 77.94±7.49) k J·mol- 1 和(778.81±3 4.86) k J·mol- 1 ;每克样品反应终止时压力分别达到2 173 .84k Pa、2 0 74.80 k Pa和240 8.65 k Pa,压力升高值△P分别为:819.42 k Pa、1619.3 7k Pa和80 8.5 4k Pa。 This paper introduces the author's adiabatic thermal analysis of 1 mol·L^(-1) solutions of LiPF_6 with ethylene carbonate (EC) + diethyl carbonate (DEC) + dimethyl carbonate (DMC) (1:1:1 in mass), EC+ DMC(1:1 in mass)and EC+DEC(1:1 in mass)Electrolytes frequently used in lithium ion battery. The thermal safety of Electrolytes is assessed then according to the results of tests. The initial temperatures of decomposition reaction of these three electrolytes are respectively 182.26 ℃, 181.95 ℃and 196.47 ℃. Based on the adiabatic theory model, the activation energies of the decomposition reactions are calculated respectively, which are (246.20±2.87) kJ·mol^(-1), (217.81±2.51) kJ·mol^(-1) and (778.81±34.86) kJ·mol^(-1). The time for getting to the maximum rate of temperature rise is another value to show how drastic the reaction is, which obtained here are 13.33 min, 14.47 min and 5.76 min. The adiabatic temperature rise of these three electrolytes is 114.91 ℃, 106.86 ℃ and 22.37 ℃ respectively. The final pressures of 1 gram of above-mentioned three samples when decomposition reactions finished are 2 173.84 kPa, 2 074.80 kPa and 2 408.65 kPa, and the improvement of pressure, △P, are 819.42 kPa, 1 619.37 kPa and 808.54 kPa, respectively.
作者 钱新明 周波
出处 《安全与环境学报》 CAS CSCD 2005年第2期106-111,共6页 Journal of Safety and Environment
关键词 物理化学 电解液 加速量热仪(ARC) 热安全性 活化能 physical chemistry electrolyte accelerating rate calorimeter (ARC) thermal safety activation energy
  • 相关文献

参考文献14

  • 1冯长根,傅智敏,钱新明.绝热方法评价热安定性的改进模型与应用[J].北京理工大学学报,2003,23(1):22-25. 被引量:22
  • 2胡广侠,解晶莹.影响锂离子电池安全性的因素[J].电化学,2002,8(3):245-251. 被引量:41
  • 3Hossein Maleki, Guoping Deng, Anaba Anani, et al. Thermal stability of Li-ion cells and components [J]. Journal of The Electrochemical Society, 1999,146 (9): 3224~3229.
  • 4Laman F C, Gee M A and Denovan J. Impedance studies for separators in rechargeable lithium batteries [J]. Journal of the Electrochemical Society, 1993,140: L51 ~L53.
  • 5Richardson T J and Ross P N. Overcharge protection for rechargeable lithium polymer electrolyte batteries [J]. Journal of the Electrochemical Society, 1996,143: 3992~3996.
  • 6Yoo E Hyung, Donald R Vissers and Khalil Amine. Flameretardant additives for lithium-ion batteries [J]. Journal of Power Sources, 2003,119-121:, 383~387.
  • 7Richard M N and Dahn J R. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte [J]. Journal of the Electrochemical Society, 1999,146(6): 2068~2077.
  • 8Hossein Maleki, Guoping Deng, Anaba Anani, et al. Thermal stability of Li-ion cells and components [J]. Journal of the Electrochemical Society, 1999,146(9): 3224~3229.
  • 9MacNeil D D, Hatchard T D and Dahn J R. A comparison between the high temperature electrode/electrolyte reactions of Lix CoO2 and LixMn2O4 [J]. Journal of the Electrochemical Society, 2001,148 (7): A663~A667.
  • 10Gerardine G Botte, Ralph E White and Zhang Zhengming.Thermal stability of LiPF6-EC: EMC electrolyte for lithium ion batteries [J]. Journal of Power Sources, 2001,97~ 98: 570~575.

二级参考文献12

共引文献61

同被引文献70

引证文献4

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部