期刊文献+

一种改进的支持向量分类方法及其应用 被引量:12

An Improved Support Vector Classification and Its Applicationn
下载PDF
导出
摘要 提出了一种改进的支持向量分类方法——NN-SVM-KNN。用最近邻((NN)对训练集进行修剪,用支持向量机(SVM)进行分类,同时在分类过程中,判断待识样本是否落在间隔之外,若是直接用SVM分类,否则,用所有的支持向量作为训练集,进行K近邻分类。并把这种方法应用到个人信用评估中,和其它信用评估方法比较,得到了比较好的结果。 A new method of support vector machine(SVM) ──NN-SVM-KNN is presented. It first prunes the training set using NN, then classifies the new training set with SVM, in the classifying process, tests whether the test sample is in the margin, the tested sample would be classified with SVM. Otherwise, the KNN method will be used. Furthermore, this new method is applied to personal credit scoring, and it reports better results when contrasted with the other methods of credit scoring.
出处 《计算机工程》 CAS CSCD 北大核心 2005年第8期153-154,共2页 Computer Engineering
基金 国家自然科学基金资助项目(10371131)
关键词 支持向量机 信用评估 最近邻 Support vector machine Credit scoring Nearest neighbor(NN)
  • 相关文献

参考文献6

  • 1Vapnik V N. An Overview of Statistical Learning Theory. IEEE Trans . on NN,1999,10(3): 988-999.
  • 2Nello C,John S T. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press,2000.
  • 3Nakaya A,Furuukawa H,Morishita S. Weighted Majority Decision Among Several Region Rules for Scientific Discovery. Discovery Science,1999: 17-29.
  • 4Gestel T V. Benchmarking Least Squares Support Vector Machines Classifier. http://www. Citeseer. Nj.nec.com,2001.
  • 5Meyer D,Leisch F,Hornik K. Benchmarking Support VectorMachines. http://www. wu-wien. Ac. at/am/download/report78. pdf,2002.
  • 6Auer P,Burgsteiner H,Maass W. Reducing Communication for Distributed Learning in Neural Network. In Article Neural Neworks -ICANN 2001,Springer-Verlag,2001.

同被引文献116

引证文献12

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部