期刊文献+

小波收缩中统一阈值函数及其偏差、方差与风险分析 被引量:4

Bias, Variance and Risk Analysis of Uniform Threshod Function in Wavelet Shrinkage
下载PDF
导出
摘要 该文建立了小波阈值消噪的统一阈值函数,推导了统一阈值函数的偏差、方差、风险的明确关系式。利 用这些公式研究了参数不同时(以u=1,2,∞为例)统一阈值函数估计的偏差、方差、风险与阈值以及小波系数的关 系,得到了小波统一阈值函数消噪估计的性能,对小波消噪在工程中应用有重要的理论指导意义。 In this paper, the uniform threshold function of waveshrink is build.Computationally efficient formulas for computing bias, variance and risk of uniform threshold function are derived. These formulas provide a new way of understanding how waveshrink works. On the basis of this, the relation of bias, variance and risk of uniform threshold function(u=1,2, ∞) with threshold value and wavelet coefficients are compared. These comparisons give the performance of waveshrink in finite sample situations.
出处 《电子与信息学报》 EI CSCD 北大核心 2005年第4期536-539,共4页 Journal of Electronics & Information Technology
关键词 小波收缩 阈值函数 偏差估计 方差估计 风险估计 Wavelet shrinkage, Threshold function, Bias estimation, Variance estimation, Risk estimation
  • 相关文献

参考文献13

  • 1MallatS 杨力华 戴道清 黄文良 等译.信号处理的小波导引[M].北京:机械工业出版社,2002..
  • 2Jansen M. Noise reduction by wavelet thresholding. Springer Verlag, Lecture Notes in Statistics, 2001" 161.
  • 3Taswell C. The what, how, and why of wavelet shrinkage denoising. Computing in Science & Engineering, 2000, 2(3):12- 19.
  • 4Donoho D L, Johnstone I. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 1994, 81(3): 425 - 455.
  • 5Donoho D L. De-noising by soft-thresholding. IEEE Trans. on Info. Theory, 1995, 41(3): 612 - 627.
  • 6Donoho D L, Johnstone I, Kerkacharian G. Wavelet shrinkage:Asymptopia?J of the Loyal Statist. Soc. Ser. B, 1995, 57(2):301 - 369.
  • 7Antoniadis A. Wavelets in statistics: a review. J. Ital. Statist. Soc,1997, 6(1): 97 - 144.
  • 8Abramovich F, Bailey T C, Sapatinas T. Wavelet analysis and its statistical applications. The Statistician-J. of the Royal Statist. Soc.Set D, 2000, 49(1): 1 - 29.
  • 9Bruce A G, Gao H Y. WaveShrink:shrinkage functions and thresholds. SPIE, 1995, 2569:270 - 281.
  • 10Bruce A G, Gao H Y. Understanding waveshrink: variance and bias estimation. Biometrika, 1996, 83(4): 727 - 745.

共引文献8

同被引文献39

  • 1梁栋,沈敏,高清维,鲍文霞,屈磊.一种基于Contourlet递归Cycle Spinning的图像去噪方法[J].电子学报,2005,33(11):2044-2046. 被引量:38
  • 2孟志强,王鼎顺,周华安.小波图像消噪中阈值与信噪比的单峰规律及阈值试探方法[J].电子测量与仪器学报,2006,20(5):63-67. 被引量:8
  • 3YANG D L, XU M X. A noise cancellaion method based on wavelet transform[A]. The Second International Symposium on Chinese Spoken Language Processing(SCSLP)[C]. Beijing, 2006: 117-201.
  • 4Chang Sun W, Kong Y, Yang Sung I. Speech enhancement for non-stationary noise environment by adaptive wavelet packet[J]. ICASSP, 2002: 561-564.
  • 5L.K.Shark, C.Yu. De-noising by optimal fuzzy thresholding in wavelet domain[J]. IEEE Electronics Letters, 2004, 36(6): 581-582.
  • 6Jansen M.Asymptotic behavior of the minmum Meam squared error threshold for noisy wavelet Coefficients of piecewise smooth signals[J]. IEEE Trans. on Signal Proc, 2001, 49(6): 1113-1118.
  • 7HASAN M K, SALAHUDDIN S, KHAN M R. Modified a priori SNR for speech enhancement using spectral subtraction rules[J]. IEEE Signal Process, 2004, 11(4): 450-453.
  • 8Jackson L. Digital Filtering and Signal Processing with MATLAB Exercises[M]. Third edition. Kluwer Academic Publishers, 2006: 139-176.
  • 9Cai J F,Candes E J,Shen Z.A singular value thresholdingalgorithm for matrix completion[J].SIAM J.on Optimization,2008,20 (4):1956-1982.
  • 10Donoho D L,Johnstone I M.Ideal spatial adaptation viawavelet shrinkage[J].Biometrika,1994,81(2):425-455.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部