期刊文献+

基于ANFIS的涡轮发动机风车工况建模仿真 被引量:6

Turbojet modeling and simulation in wind milling based on ANFIS
下载PDF
导出
摘要 小样本情况下神经网络模型泛化能力不足的缺陷限制了其在涡喷发动机风车工况建模中的应用。在十组风车工况实验数据的基础上建立了涡喷发动机风车工况的神经网络模型, 并且利用人们对涡喷发动机动静态、相似参数以及剩余功率与加速度的关系等先验知识不断对神经网络的输入变量进行变换, 逐次减少神经网络的训练样本数目, 最终只用一组训练样本就可以训练出泛化能力较强的神经网络模型, 大大提高了小样本情况下神经网络的泛化能力。仿真结果表明, 该方法简单有效。 The deficiency of weak generalization ability in the case of small sample size has restricted neural network's application in modeling of wind milling. Based on ten samples experimental data of wind milling, a neural network's model of wind milling is built. By incorporating priori knowledge of dynamic and static state of rotor, similar parameters and the relationship between residual power and acceleration, the training samples numbers can be decreased step by step. Finally a neural network model of wind milling, which has a good generalization ability, can be set up in the case of just one training sample. The incorporation of priori knowledge greatly improves neural network's generalization ability. Results of the simulation prove that the method is simple and effective.
出处 《推进技术》 EI CAS CSCD 北大核心 2005年第2期162-166,共5页 Journal of Propulsion Technology
关键词 涡轮喷气发动机 风车工况 模糊神经网络 先验知识 Acceleration Computer applications Mathematical models Neural networks
  • 相关文献

参考文献9

  • 1于达仁,王建波,王广雄.应用自组织网络识别火箭发动机泄漏故障[J].推进技术,2001,22(1):47-49. 被引量:6
  • 2Wang Ying-Chun, Wu Hong-Xin, Geng Chang-Fu. Study and application of a class of neural networks model with better generalization ability [C]. Intelligent Control and Automation, 2002. Proceedings of the 4th World Congress on,2002,3:2016 ~ 2020.
  • 3Jian-Nan Lin, Shin-Min Song. Modeling gait transitions of quadrupeds and their generalization with CMAC neural networks [J]. Systems, Man and Cybernetics, Part C, IEEE Transactions on ,2002,32:177 ~ 189.
  • 4Horvath G, Szabo T. CMAC neural network with improved generalization property for system modeling[C]. Instrumentation and Measurement Technology Conference, 2002.IMTC/2002. Proceedings of the 19th IEEE ,2002,2:1603 ~1608.
  • 5Ueda N, Nakano R. Estimating expected error rates of neural network classifiers in small sample size situations: a comparison of cross-validation and bootstrap [C]. Neural Networks, 1995, Proceedings. , IEEE International Conference on, 1995,1:101 ~ 104.
  • 6殷春霞,胡铁松,郭元裕.改善径向基函数网络泛化性能的主成分分析法及应用研究[J].武汉水利电力大学学报,2000,33(2):85-89. 被引量:1
  • 7Hiden H G, Willis M J, Tham M T, et al. Non-linear principa components analysis using genetic programming[C]. Genetic Algorithms In Engineering Systems:Innovations and Applications, 1997. GALESIA 97. Second International Conference On (Conf. Pub1. No. 446), 1997:302 ~ 307.
  • 8Malthouse E C. Limitations of nonlinear PCA as performed with generic neural networks [J]. Neural Networks, IEEE Transactions on, 1998,9(1): 165 ~ 173.
  • 9Meng Jinli, Sun Zhiyi. Application of combined neural networks in nonlinear function approximation [C]. Intelligent Control and Automation, 2000. Proceedings of the 3rd World Congress on, 2000,2:839 ~ 841.

二级参考文献7

共引文献5

同被引文献30

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部