期刊文献+

Periodicity in a Nonlinear Predator-prey System with State Dependent Delays 被引量:5

Periodicity in a Nonlinear Predator-prey System with State Dependent Delays
原文传递
导出
摘要 With the help of a continuation theorem based on Gaines and Mawhinscoincidence degree, easily verifiable criteria are established for the global existence of positiveperiodic solutions of the following nonlinear state dependent delays predator-prey system{dN_1(t)/dt = N_1(t)[b_1(t) - ∑ from i=1 to n of ai(t)(N_1(t-τ_i(t,N_1(t), N_2(t))))^(α_i) - ∑from j=1 to m of c_j(t)(N_2(t - σ_j(t,N1(t),N_2(t))))^(β_j)] dN_2(t)/dt = N_2(t)[-b_2(t) + ∑ fromi=1 to n of d_i(5)(N_1(t - ρ_i(t,N_1(t),N_2(t))))^(γ_i)], where a_i(t), c_j(t), d_i(t) arecontinuous positive periodic functions with periodic 】 0, b_1(t), b_2(t) are continuous periodicfunctions with periodic ω and ∫_0~ωb_i(t)dt 】 0. τ_i, σ_j, ρ_i (i = 1,2,…,m) are continuousand ω-periodic with respect to their first arguments, respectively. α_i, β_j, γ_i (i = 1,2,…,n,j = 1,2,…,m) are positive constants. With the help of a continuation theorem based on Gaines and Mawhinscoincidence degree, easily verifiable criteria are established for the global existence of positiveperiodic solutions of the following nonlinear state dependent delays predator-prey system{dN_1(t)/dt = N_1(t)[b_1(t) - ∑ from i=1 to n of ai(t)(N_1(t-τ_i(t,N_1(t), N_2(t))))^(α_i) - ∑from j=1 to m of c_j(t)(N_2(t - σ_j(t,N1(t),N_2(t))))^(β_j)] dN_2(t)/dt = N_2(t)[-b_2(t) + ∑ fromi=1 to n of d_i(5)(N_1(t - ρ_i(t,N_1(t),N_2(t))))^(γ_i)], where a_i(t), c_j(t), d_i(t) arecontinuous positive periodic functions with periodic > 0, b_1(t), b_2(t) are continuous periodicfunctions with periodic ω and ∫_0~ωb_i(t)dt > 0. τ_i, σ_j, ρ_i (i = 1,2,…,m) are continuousand ω-periodic with respect to their first arguments, respectively. α_i, β_j, γ_i (i = 1,2,…,n,j = 1,2,…,m) are positive constants.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2005年第1期49-60,共12页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China (Tian Yuan Foundation) (No.10426010) the Foundation of Science and Technology of Fujian Province for Young Scholars (2004J0002) the Foundation of Fujian Education Bureau (JA04156, JA0301
关键词 periodic solutions NONLINEAR DELAY PREDATOR-PREY coincidence degree periodic solutions nonlinear delay predator-prey coincidence degree
  • 相关文献

参考文献4

二级参考文献14

  • 1李黎明.一类高维非自治系统的周期解[J].应用数学学报,1989,12(3):272-280. 被引量:38
  • 2陈兰荪 梁肇军.生物动力学系统中的几个研究课题[A]..常微分方程与控制论论文集:武汉学术讨论会[C].,1987.87-98.
  • 3王克,数学学报,1997年,40卷,321页
  • 4Zhao Y Q,Nonlinear Analysis Theory Methods Applications,1994年,23卷,651页
  • 5Kuang Y,Delay Differential Equations with Applications in Population Dynamics,1993年
  • 6He X Z,J Math Anal Appl,1990年,28卷,355页
  • 7Lalli B S, Zhang B G. On a periodicdelay population model[J]. Quart Appl Math, 1994, LII(1):35-42.
  • 8Gopalsamy, K, Ladas G. On the oscillation and asymptotic behavior of N'(t)+N(t)[a + bN(t- τ)- cN2(t-τ)][J]. Quart Appl Math, 1990, XL VIII(3):433-440.
  • 9Kuang Y. Delay Differential Equations with Applications in Population Dynamics[M].Boston: Academic Press, 1993, 143-146.
  • 10Yan J R, Feng Q X. Global attractivity and oscillation in a nonlinear delayequation[J]. Nonlinear Analysis, 2000, 43(1):101-108.

共引文献69

同被引文献49

  • 1Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations[ M ]. Berlin:Springer-Verlag, 1977:40-41.
  • 2X.X.Chen.Periodicity in a nonlinear discrete predator-prey system with state dependent delays. Nonlinear Anal.:Real World Appli . 2007
  • 3Y.P.Chen,F.D.Chen.Dynamic behaviors of a discrete nonlinear predator-prey system. Annl.Differential Equations . 2008
  • 4M.Fan,S.Agarwal.Periodic solutions for a class of discrete time competition systems. Nonlinear Studies . 2002
  • 5M.Fan,S.Agarwal.Periodic solutions of nonautonomous discrete predator-prey system of Lotka-Volterra type. Applicable Analysis . 2002
  • 6Z.D.Teng,L.S.Chen.Permanence and extinction of periodic predator-prey systems in patchy environment with delay. Nonlinear Analysis . 2003
  • 7F. Chen,D. Sun,J. Shi.Periodicity in a food-limited population model with toxicants and state dependent delays. Journal of Mathematical Analysis and Applications . 2003
  • 8X. T. Yang.Uniform persistence and periodic solutions for a discrete predator-prey system with delays. J. Math. Anal. Appl . 2006
  • 9Agarwal RP.Difference Equations and Inequalities; Theory, Method and Applications. . 1992
  • 10Berryman AA.The origins and evolution of predator-prey theory. Ecology . 1992

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部