期刊文献+

关联规则挖掘AprioriTid算法的改进 被引量:15

Improvement of AprioriTid algorithm for mining association rules
下载PDF
导出
摘要 提出了一种将AprioriTid算法与事务压缩和项目压缩相结合的改进算法。该算法中候选项目集及支持度计算是在每条事务压缩后通过联接产生,候选项目集采用关键字识别,省去了AprioriTid算法中的剪枝和字符串模式匹配步骤。实验结果表明,改进的算法执行效率明显优于AprioriTid算法。 An enhanced algorithm associating AprioriTid with transaction reduction and item reduction technique was put forward. In the algorithm candidate set generation and the support calculation of each itemset were created after each transaction was compressed and connected, and the key word identifying was adopted in the candidate set, thus the process of pruning and string pattern matching was removed from AprioriTid algorithm. Testing results showed that the algorithm clearly outperformed AprioriTid algorithm.
出处 《计算机应用》 CSCD 北大核心 2005年第5期979-981,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目项目(40001017) 霍英东教育基金会青年教师基金资助项目(71017)
关键词 数据挖掘 关联规则 APRIORITID算法 事务压缩 项目压缩 data mining association rule AprioriTid algorithm transaction reduction item reduction
  • 相关文献

参考文献6

二级参考文献11

  • 1[1]Agrawal R, Srikant R. Fast algorithms for mining association rules[C]. In Proceeding of the 20th International Conference on Very Large Databases. 1994, 487-499
  • 2[2]Jong S P, Ming S C, Philip S Y. An effective hash based algorithm for mining association rules[C]. In Proceedings of the 1995 ACM SIGMOD International Conference On Management of Data. 1995, 24(2): 175-186
  • 3[3]Jiawei H, Micheline K. Data mining: concepts and techniques[C]. Morgan, 2001, 149-158
  • 4[1]R.Agrawal,T.Imielinski,and A.Swami.Mining association rules between sets of items in large databases.Proceedings Of ACM SIGMOD ,May.1993, PP.207-216.
  • 5[3]Fan Jiannua and Li Deyi. An Overview of Data Mining and Knowledge Discovery, J.of Comput. Sci.&Technol, Vol.13,No.4,Jul.1998,PP.348-368.
  • 6Han J,Proc 2000 ACMSIGMOD Int Conf Management of Data(SIGMOD 2000),2000年
  • 7Han Jiawei,Issuer for On-line Analytical Mining of Data Warehouses
  • 8R Agrawal et al. Mining associaton rules between sets of items in larger databases[ A]. Proceedings of 1993 ACM SIGMOD lternational Conference on Management of Data[C]. Washington DC, 1993,207 - 216.
  • 9范明等译.数据挖掘概念与技术[M].北京:机械工业出版社,2001.
  • 10R Agrawal et al. fast algorithms for mining association rules[ A]. Proceedings of the 20th international Conference On Very Large Database[C]. Santiago,Chile, 1994.487 - 499.

共引文献194

同被引文献70

引证文献15

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部