期刊文献+

一种基于四叉树的快速聚类算法 被引量:6

Fast clustering algorithm based on Quad-tree
下载PDF
导出
摘要 以DBSCAN算法为基础,提出一种基于四叉树的快速聚类算法。新算法选择处于核心点的中空球形邻域中的点作为种子点来扩展类,大大减少区域查询的次数,降低I/O开销;使用快速生成的四叉树进行区域查询,在提高查询效率的同时,有效缩短构造空间索引的时间。文中对二维模拟数据和真实数据进行测试,结果表明新算法是有效的。 On the DBSCAN algorithm, a fast clustering algorithm based on quad-tree was proposed. It chose the points in the cirque-shaped neighborhood of a core point as seeds to expand the cluster, which decreased the execution frequency of region query and reduced the I/O cost. It used a fast-created quad-tree to execute region query, which not only improved the query efficiency, but also shortened the time of constructing a spatial index. Experiment results show that the new algorithm is effective.
出处 《计算机应用》 CSCD 北大核心 2005年第5期1001-1003,共3页 journal of Computer Applications
基金 江苏省重点实验室开放基金资助项目(KSJ03064)
关键词 聚类 DBSCAN 四叉树 clustering DBSCAN quad-tree
  • 相关文献

参考文献6

  • 1周水庚,周傲英,曹晶.基于数据分区的DBSCAN算法[J].计算机研究与发展,2000,37(10):1153-1159. 被引量:99
  • 2ESTER M, KRIEGEL HP, SANDER J,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[A]. Proc. of 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD-96)[C]. Portland, Oregon, 1996.
  • 3BECKMANN N. KRIEGEL HP, SCHNEIDER R,et al. The R^*-tree: An Efficient and Robust Access Method for Points and Rectangles[A]. Proc. ACM SIGMOD[C], 1990.322-331.
  • 4AHN HK, MAMOULIS N, WONG HM. A Survey on Multidimensional Access Methods[R]. Research report, Hong Kong University of Science and Technology, Hong Kong, 1997.
  • 5STONEBRAKER M, FREW J, GARDELS K,et al. The SEQUOIA 2000 Storage Benchmark[A]. Proc. ACM SIGMOD Int. Conf. on Management of Date[C]. Washington, 1993.2-11.
  • 6钱卫宁,周傲英.从多角度分析现有聚类算法(英文)[J].软件学报,2002,13(8):1382-1394. 被引量:86

二级参考文献41

  • 1[1]Fasulo, D. An analysis of recent work on clustering algorithms. Technical Report, Department of Computer Science and Engineering, University of Washington, 1999. http://www.cs.washington.edu.
  • 2[2]Baraldi, A., Blonda, P. A survey of fuzzy clustering algorithms for pattern recognition. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 1999,29:786~801.
  • 3[3]Keim, D.A., Hinneburg, A. Clustering techniques for large data sets - from the past to the future. Tutorial Notes for ACM SIGKDD 1999 International Conference on Knowledge Discovery and Data Mining. San Diego, CA, ACM, 1999. 141~181.
  • 4[4]McQueen, J. Some methods for classification and Analysis of Multivariate Observations. In: LeCam, L., Neyman, J., eds. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. 1967. 281~297.
  • 5[5]Zhang, T., Ramakrishnan, R., Livny, M. BIRCH: an efficient data clustering method for very large databases. In: Jagadish, H.V., Mumick, I.S., eds. Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data. Quebec: ACM Press, 1996. 103~114.
  • 6[6]Guha, S., Rastogi, R., Shim, K. CURE: an efficient clustering algorithm for large databases. In: Haas, L.M., Tiwary, A., eds. Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. 73~84.
  • 7[7]Beyer, K.S., Goldstein, J., Ramakrishnan, R., et al. When is 'nearest neighbor' meaningful? In: Beeri, C., Buneman, P., eds. Proceedings of the 7th International Conference on Data Theory, ICDT'99. LNCS1540, Jerusalem, Israel: Springer, 1999. 217~235.
  • 8[8]Ester, M., Kriegel, H.-P., Sander, J., et al. A density-based algorithm for discovering clusters in large spatial databases with noises. In: Simoudis, E., Han, J., Fayyad, U.M., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD'96). AAAI Press, 1996. 226~231.
  • 9[9]Ester, M., Kriegel, H.-P., Sander, J., et al. Incremental clustering for mining in a data warehousing environment. In: Gupta, A., Shmueli, O., Widom, J., eds. Proceedings of the 24th International Conference on Very Large Data Bases. New York: Morgan Kaufmann, 1998. 323~333.
  • 10[10]Sander, J., Ester, M., Kriegel, H.-P., et al. Density-Based clustering in spatial databases: the algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery, 1998,2(2):169~194.

共引文献183

同被引文献71

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部