期刊文献+

MgCl_2·nH_2O的溶解与水合热化学研究 被引量:1

Thermo-chemical Study of Dissolution and Hydration of MgCl_2·nH_2O
下载PDF
导出
摘要 利用精密量热计测定了氯化镁及其水合物(MgCl2、MgCl2·2H2O、MgCl2·4H2O、MgCl2·6H2O)晶体在298.15K温度下溶于水的积分溶解热。利用Pitzer电解质溶液理论模型,计算了溶质的相对表观摩尔焓,从而直接获得了它们的标准摩尔溶解焓分别为(-155.86±0.17)、(-79.45±0.17)、(-41.78±0.18)和(-14.58±0.16)kJ·mol-1。氯化镁2、4、6水合物晶体的标准摩尔生成焓分别为-1289.39、-1898.72和-2497.58kJ·mol-1;摩尔水合焓则依次为-76.41、-114.08和-141.28kJ·mol-1。并依据Born-Haber循环法得到它们的晶格能依次为-2490.36、-3158.37、-3772.70和-4376.56kJ·mol-1。 The integral dissolution heats of MgCl_2,MgCl_2·2H_2O,MgCl_2·4H_2O,MgCl_2·6H_2O in water at 298.15 K were determined by using precision calorimeter.The relative apparent molar enthalpies of MgCl_2 and its hydrates were calculated by utilizing Pitzers' electrolytic solution model.The mean integral dissolution enthalpies for MgCl_2 and its hydrates (MgCl_2·2H_2O,MgCl_2·4H_2O,MgCl_2·6H_2O) are-154.94,-78.56,-40.78 and-13.14 kJ·mol^-1 ,respectively.The standard molar hydration enthalpies and formation enthalpies for the three hydrates were also accurately obtained with the values of (-76.41,-114.08 and-141.28 kJ·mol^-1 ) and (-1289.39,-1898.72 and-2497.58 kJ·mol^-1 ) respectively.According to Born-Haber circulation method,the lattice energy for them was estimated.
作者 张军 赵萍
出处 《河南科技大学学报(自然科学版)》 CAS 2005年第2期93-97,i007,共6页 Journal of Henan University of Science And Technology:Natural Science
基金 国家自然科学基金资助项目(20171022) 河南科技大学重大预研基金资助项目(2004ZD005) 河南科技大学人才科学研究基金资助项目(04011)
  • 相关文献

参考文献8

  • 1周惦武,庄厚龙,刘金水,彭平.镁合金材料的研究进展与发展趋势[J].河南科技大学学报(自然科学版),2004,25(3):14-18. 被引量:42
  • 2Monaenkova A S.Integral Dissolution Heat of Magnesium Chloride in Water at Different Temperature[J].Zh Fiz Khim,1984,58(3):731-733.
  • 3Shin C,Criss C M.Standard Enthalpies of Formation of Anhydrous and Aqueous Magnesium Chloride at 298.15 K[J].J Chem Thermodyn,1979,11(7):663-666.
  • 4Prosen E J,Kilday M V.Standard Enthalpies of Some Organics[J].J Research NBS,1973,(77):581-586.
  • 5Pitzer K S.Theory:Ion Interaction Approach,Activity Coefficients in Electrolyte Solutions [M].Vol.1,R.M.Pytkowioz (ed.),Florida,CRC Press,1979:144-186.
  • 6Pitzer K S,Kim J J.Thermodynamics of Electrolytes,(Ⅳ)[J].J Amer Chem Soc,1974,96:5701-5707.
  • 7Parker V B.Technical Note [R].NBS,1971:270-276.
  • 8Johnson D A.Some Thermodynamic Aspects of Inorg Chem[M].2nd ed.New York:Academic press,1982:30-34.

二级参考文献24

  • 1赵志远.耐腐蚀铸造镁合金的进展[J].航空制造工程,1993(8):22-25. 被引量:2
  • 2内田博幸 新谷智彦.Estimation of Creep Deformation Behavior in Mg—Al Alloy by Projection Method[J].轻金属,1995,45(10):572-577.
  • 3Pettersen K.Magnesium Diecasting Alloy Design [A].Magnesium Technology 2002[C].Kaplan H i TMS,2002:241-246.
  • 4Ma Qian,Zheng L,Graham D,et al.Settling of Undissolved Airconnium Particles in Pure Magnesium Melts[J].Journal of Light Metals 2001,(1):157-165.
  • 5Powell B R.The Relationship Between Microstructure and Creep Behavior in AE42 Magnesium Die Casting Alloy[A].Hryn J Magnesium Technology [C].TMS,2001.175-181.
  • 6Ma Qian,StJohn L D H,Frost M T.Characteristic Zirconnium-rich Coring Structures in Mg-Zr Alloys[J].Scripta Materialia 2002(46):649-654.
  • 7Rokhlin L L,Nikitina N I.Recovery after Ageing of Mg-Y and Mg-Gd Alloys[J].Journal of Alloys and Compounds,1998,279:166-170.
  • 8Socjusz-Podosek M,Litynska L.Effect of Yttrium on Structure and Mechanical Properties of Mg Alloys[J].Materials Chemistry and Physics,2003,80:472-475.
  • 9Mayumi Suzuki,Hiroyuki Sato,Kouich Maruyama,et al.Creep Deformation Behavior and Dislocation Substructures of Mg-Y Binary Alloys[J].Materials Science and Engineering 2001,A319:751-755.
  • 10Zhang M X,Kelly P M.Morphology and Crystallography of Mg24Y5 Precipitate in Mg-Y Alloy[J].Scripta Materialia 2003,48:379-384.

共引文献41

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部