期刊文献+

计算离散动力系统不稳定周期轨道的精英子空间差异演化算法

Computing Unstable Period Orbits of Discrete Chaotic System Though Differential Evolutionary Algorithms Basing on Elite Subspace
原文传递
导出
摘要  通过把探索周期轨道的问题转化为一个非负函数的极小化问题,基于空间收缩的思想,反复重新初始化种群以提高群体的差异性,提高对可行域探测的有效性,提出一类精英子空间差异演化算法求解不同类型非线性映射的不稳定周期轨道,对典型离散动力系统的初步仿真结果表明该算法是一种计算不稳定周期轨道的稳健有效算法. In this paper, through transferring computing periodic orbits into the problem of a non negative function's minimization, a new approach for it by using Differential Evolutionary Algorithms basing on Elite Subspace is proposed by regenerating the population to raise the difference of the population. Experimental results on well known and widely used various nonlinear mappings indicate that proposed algorithm is robust and efficient for unstable periodic orbit of discrete chaotic system.
作者 高飞
出处 《系统工程理论与实践》 EI CSCD 北大核心 2005年第4期96-102,共7页 Systems Engineering-Theory & Practice
基金 武汉理工大学校基金(XJJ2004113)资助
关键词 非线性映射 周期轨道 精英子空间 差异演化 Nonlinear map Period Orbit Elite Subspace Differential Evolution
  • 相关文献

参考文献12

  • 1Verhulst F. Nonlinear Differential Equations and Dynamical Systems[M]. Berlin: Springer-Verlag, 1990.
  • 2Skokos C. On the stability of periodic orbits of high dimensional autonomous Hamiltonian systems[J]. Physica D, 2001,159(3-4):155-179.
  • 3Vrahatis M N. An efficient method for locating and computing periodic orbits of nonlinear mappings [J]. J. Comp. Physics, 1995,(119):105-119.
  • 4Whitley D. An overview of evolutionary algorithms: Practical issues and common pitfalls [J]. Information and Software Technology, 2001, 43(14):817-831.
  • 5谢晓锋,张文俊,张国瑞,杨之廉.差异演化的实验研究[J].控制与决策,2004,19(1):49-52. 被引量:70
  • 6高飞.基于空间收缩的种群灭亡差异演化算法[J].复杂系统与复杂性科学,2004,1(2):87-92. 被引量:12
  • 7Parsopoulos K, Vrahatis M. Computing periodic orbits of nonlinear mappings through particle swarm optimization [C].Proceedings of the 4th GRACM Congress on Computational Mechanics, Patras, Greece, 2002.
  • 8Magoulas G, Vrahatis M, Androulakis G. On the alleviation of local minima in backpropagation [J]. Nonlinear Analysis, Theory, Methods & Applications, 1997(30): 4545-4550.
  • 9Henon M. Numerical study of quadratic area-preserving mappings [J]. Quart. Appl. Math., 1969(27): 291-311.
  • 10Vrahatis M, Isliker H, Bountis T. Structure and breakdown of invariant tori in a 4-d mapping model of accelerator dynamics [J].Inter. J. Bifurc. Chaos, 1997(7): 2707-2722.

二级参考文献20

  • 1[1]Koziel S, Michalewicz Z. Evolutionary algorithms, homomorphous mappings and constrained parameter optimization[J]. Evolutionary Computation, 1999, 7 (1): 19-44.
  • 2[2]Whitley D. An overview of evolutionary algorithms: Practical issues and common pitfalls[J]. Information and Software Technology, 2001, 43(14): 817-831.
  • 3[3]Fogel L J, Owens A J, Walsh M J. Artificial Intelligence Through Simulated Evolution[M]. Chichester: John Wiley, 1996.
  • 4[4]Rechenberg I. Evolutionsstrategie: Optimierung Technischer Systems nach Prinzipien der Biologischen Evolution[M]. Stuttgart: Frommann-Holzboog Verlag, 1973.
  • 5[5]Holland J H. Adaptation in Natural and Artificial Systems[M].Ann Arbor:University of Michigan Press, 1975.
  • 6[6]De Jong K A. The analysis of the behavior of a class of genetic adaptive systems[D]. Ann Arbor: University of Michigan, 1975.
  • 7[7]Storn R. Differential evolution design of an IIR-filter [A]. IEEE Int Conf on Evolutionary Computation[C]. Nagoya,1996. 268-273.
  • 8[8]Storn R, Price K. Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces[J]. J of Global Optimization, 1997, 11(4): 341-359.
  • 9[9]Pahner U, Hameyer K. Adaptive coupling of differential evolution and multiquadrics approxima-tion for the tuning of the optimization process [J]. IEEE Trans on Magnetics, 2000, 36(4): 1047-1051.
  • 10[10]Cheng S L, Hwang C. Optimal approximation of linear systems by a differential evolution algorithm [J]. IEEE Trans on Systems, Man and Cybernetics - Part A, 2001, 31(6): 698-707.

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部