期刊文献+

基于SVR算法的短期负荷快速预测研究 被引量:4

Short-term load fast forecasting based on support vector regression
下载PDF
导出
摘要 将支持向量回归(SVR)算法引入短期负荷预测,为提高预测速度,根据负荷预测的特点,提出了一种SVR的在线训练算法,该算法通过不断输入新的负荷数据来更新回归函数,以获得更快的计算速度和较好的预测结果。和传统的SVR算法比较,它能在保证精度的同时大大减少支持向量的数目,具有更快的收敛性。仿真结果表明了算法的有效性。 An online training algorithm for short-term load fast forecasting based on SVR(Support Vector Regression) method is presented. In order to provide the accurate forecasted load, the regression function is updated by inputting new load data in the proposed algorithm. The online training algorithm not only results in a smaller number of support vectors with the same accuracy preserved but also has a much faster convergence and a better generalization performance compared with the conventional SVR algorithms. The results obtained from experiments show that the algorithm can achieve great forecasting accuracy and high computing speed. This project is supported by XJ Bounty of China Electricity Fund.
出处 《继电器》 CSCD 北大核心 2005年第9期17-20,49,共5页 Relay
基金 中华电力基金会许继奖教金资助项目~~
关键词 短期负荷预测 支持向量机 支持向量回归 short-term load forecasting support vector machine support vector regression
  • 相关文献

参考文献8

  • 1赵登福,王蒙,张讲社,王锡凡.基于支撑向量机方法的短期负荷预测[J].中国电机工程学报,2002,22(4):26-30. 被引量:103
  • 2李元诚,方廷健,于尔铿.短期负荷预测的支持向量机方法研究[J].中国电机工程学报,2003,23(6):55-59. 被引量:277
  • 3Liu K. Comparison of Very Short-term Load Forecasting Technique[J]. IEEE Trans on Power Systems,1996,11(2): 877-882.
  • 4Rahman S, Bhatnagar R. An Expert System Based Algorithm for Short Term Load Forecast[J]. IEEE Trans on Power Systems, 1988, 3(2): 392-399.
  • 5Charytoniuk W, Chen M S. Very Short-term Load Forecasting Using Artificial Neural Networks[J]. IEEE Trans on Power Systems, 2000, 15(1): 263-268.
  • 6Vapnik V N. The Nature of Statistical Learning Theory[M]. Springer-Verlag, 1995.
  • 7Shevade S K, Keerthi S S, Bhattacharyy C, et al. Improvements to SMO Algorithm for SVM Regression[J]. IEEE Trans on Neural Network, 2000, 11(5):1188-1193.
  • 8杨镜非,谢宏,程浩忠.SVM与Fourier算法在电网短期负荷预测中的应用[J].继电器,2004,32(4):17-19. 被引量:11

二级参考文献24

  • 1任国全,张培林.时间序列模型的Delphi编程实现[J].计算机测量与控制,2001,9(z1):74-76. 被引量:1
  • 2谢宏(XIE Hong).[D].保定:华北电力大学(Baoding:North China Institute of Electric Power),2001.
  • 3程浩忠(CHENG Hao-zhong).电力系统谐波技术(Technique of Harmonics in Power System)[Μ].上海:上海交通大学出版社(Shanghai:Shanghai Jiaotong Univesity Press),1998..
  • 4惠永杰 等(HUI Yong-jie et al):.地区电网短期负荷预测系统的研究(Research on Load Forecasting System for Distribution Grid)[J].电力系统自动化(Automation of Electric Power Systems),2001,25(5):37-40.
  • 5[1]T. Masters ,Neural,Novel& Hybird Algorithms for Tim Series Pre-diction[M], John Wiley & Sons. Inc., 1995.
  • 6[2]A. D. Papalexopoulos and T. C. Hesterberg , A regression based approach to short term system load forecasting[C], Proceedings of 1989 PICA Conference , 1989:414-423,
  • 7[3]K. L. Ho , Y. Y. Hsu , C. F. Chen , T. E. Lee , C. C. Liang , T . S. Lai , and K. K. Chen , Short term load foreasting of Taiwan power system using a knowledge-based expert system[J], IEEE Tans.on Power Systems , 1990,5(4):1214-1221.
  • 8[4]A.M. Lanchlan , An improved novelty criterion for resource allocating networks[C] , IEE ,Artifical Neural Networks , Conference Publication , 1997:440:48-52
  • 9[5]D.Srinivasan, S.S.Tan , C.S.Chang and E.K.Chan ,Practical im-plentation of a hybrid fuzzy neural network for one-day-ahead load forecasting[J], IEE Proc.-Gener. Transm,1998.11(6):687-692.
  • 10[6]V.N. Vapnik ,The nature of statistical learning theory[M], New York: Springer, 1999.

共引文献347

同被引文献30

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部