期刊文献+

关于n阶图的最小减控制数

On the Minimum Minus Domination Number for Graphs of Order n
下载PDF
导出
摘要 设n≥2,R(n)表示所有n阶图的最小减控制数,本文确定了R(n)的值,即R(n)=(s-1)(4-s)2+min0,2-n+s2,其中s2≤n<s+1 2,这里x2表示x个中取2个的组合数. Let R(n)be the minimum minus domination number for all graphs of order n, In this paper we Determine the exact of R(n) for every integer n≥3,that is,R(n)=(s-1)(4-s)2+min0,2-n+s2,where≤s2≤n<s+12.
作者 徐保根
出处 《华东交通大学学报》 2005年第2期136-138,共3页 Journal of East China Jiaotong University
基金 江西省自然科学基金资助项目(0311047)
关键词 控制数 最小 n阶 组合数 minus dominating function,minus domination number signed dominating function signed domination number
  • 相关文献

参考文献8

  • 1F哈拉里.图论[M].上海:上海科学技术出版社,1980..
  • 2T. W. Haynes, S. T. Hedetniemi and P.J. Slater, Domination in graphs[M]. New York, 1998.
  • 3Zhongfu Zhang, Baogen Xu etc. A note on the lower bounds of signed domination numbers of a Graph [ J ]. Discrete Math.1999, (195) :295 - 298.
  • 4徐保根.On Minus Domination and Signed Domination in Graphs[J].Journal of Mathematical Research and Exposition,2003,23(4):586-590. 被引量:21
  • 5Baogen Xu, On signed edge domination numbers of graphs[J].Discrete Math. 2001, (239) : 179 - 189.
  • 6J. H. Hattingh and E. Ungerer, The signed and minus k-subdomination numbers of cornets [ J]. Discrete Math., 1998,(183) : 141 - 152.
  • 7E. J. Cockayne and C. M. Mynhardt, On a generalization of signed dominating function of graphs[J]. Ars. Combin. 1996,(43) :235 - 245.
  • 8Baogen. Xu, E. J. Cockayne, T. W. Haynes, S. T. Hedetniemi,S. Zhou, Extremal Graphs for inequalities involoving domination parameters[J]. Discrete Math.2000, (216) : 1 - 10.

二级参考文献8

  • 1DUNBAR J, HEDETNIEMI S, HENNING M A. et al. Minus dominationin graphs [J]. Discrete Math, 1999, 199: 35-47.
  • 2BONDY J A, MURTY V S R. Graph Theory with Applications [M]. Elsevier, Amsterdam, 1976.
  • 3ZHANG Zhong-fu, XU Bao-gen, LI Yin-zhen. et al. A note on the lower bounds of signed domination number of a graph [J]. Discrete Math, 1999, 195: 295-298.
  • 4LEE J, SOHN M Y, KIM H K. A note on graphs with large girth and small minus domination number [J]. Discrete Applied Math, 1999, 91: 299-303.
  • 5CHARTRAND G, LESNIAK L. Graphs & Digraphs [M]. Second ed. Wadsworth & Brooks/Cole, Monterey, 1986.
  • 6XU Bao-gen, COCKAYNE E J, HAYNES T W. et al. Exteremal graphs for inequalities involving domination parameters [J] . Discrete Math, 2000, 216: 1-10.
  • 7XU Bao-gen, ZHOU Shang-chao. Characterization of connected graphs with maximum domination number [J]. J Math Res Exposition, 2000, 4: 523-528.
  • 8XU Bao-gen. On signed edge domination numbers of graphs [J]. Discrete Math, 2001, 239: 179-189.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部