期刊文献+

基于支持向量机(SVM)的图像去噪方法 被引量:9

Support Vector Machine Based Image Denoising Approach
下载PDF
导出
摘要 提出了一种基于支持向量机进行图像去噪的方法。该方法利用支持向量回归技术构造图像去噪所需的滤波器,其中特征的提取和训练样本的设计旨在抑制不同类型的噪声。实验结果表明,该方法能够有效去除噪声,并能较好地保护边缘信息,适用于边缘检测等操作的预处理。 The paper presents a Support Vector Machine (SVM) based image denoising approach. The method proposed here employs the regression capability offered by SVM network to construct a filter for image denoising, where our feather selection and training data-set design enables the suppression of various kinds of noises. Our experimental results demonstrate that the proposed method works well for image denoising while edge information is substantially retained, thus it can be used as a promising image pre-processing tool.
作者 王顺利
出处 《微电子学与计算机》 CSCD 北大核心 2005年第4期96-99,共4页 Microelectronics & Computer
关键词 支持向量机 图像去噪 平滑滤波 边缘检测 Support Vector Machine(SVM), Image denoising, Smoothing filter, Edge detection
  • 相关文献

参考文献13

  • 1C Cortes, V Vapnik. Support Vector Networks[J]. Machine Learning, 1995, 20(3): 273~297.
  • 2V yapnik. The Nature of Statistical Learning Theory[M].New York: Springer-Verlag, 1995.
  • 3B Scholkopf, K Sung, C Burges et al. Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Function Classifiers[J]. IEEE Trans on Signal Processing,1997, 45(11): 2758~2765.
  • 4B Boser, I Guyon, V Vapnik. A Training Algorithm for Optimal Margin Classifiers[C]. In: Proc of the 5th Annual Workshop Computational Learning Theory (COLT'92).Pittsburgh: ACM, 1992: 144~152.
  • 5S Mukherjee, E Osuna, F Girosi. Nonlinear Prediction of Chaotic Time Series Using a Support Vector Machine [C].In:Proc of IEEE NNSP'97, 1997: 24~26.
  • 6H Drucker, C Burges, L Kaufan et al. Support Vector Regression Machines[M]. In: Advances in Neural Information Processing Systems. Cambridge, 1997, 9:155~161.
  • 7V Vapnik, S Golowich, A J Smola. Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing[M]. In: Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1997, 9:281~287.
  • 8J Smola, B Scholkopf. A Tutorial on Support Vector Regression[R]. Royal Holloway College, London, U. K., Neuro COLT Tech Rep TR-1998-030, 1998.
  • 9K R Castleman. Digital Image Processing[M]. USA , New Jersey:Prentice Hall, Inc., 1996:359~360.
  • 10沈国键,夏启明,李瑛.基于知识自适应图像平滑[J].武汉测绘科技大学学报,1995,20(2):141-145. 被引量:8

共引文献12

同被引文献79

引证文献9

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部