期刊文献+

Unified Probabilistic Models for Face Recognition from a Single Example Image per Person 被引量:4

Unified Probabilistic Models for Face Recognition from a Single Example Imageper Person
原文传递
导出
摘要 This paper presents a new technique of unified probabilistic models for facerecognition from only one single example image per person. The unified models, trained on anobtained training set with multiple samples per person, are used to recognize facial images fromanother disjoint database with a single sample per person. Variations between facial images aremodeled as two unified probabilistic models: within-class variations and between-class variations.Gaussian Mixture Models are used to approximate the distributions of the two variations and exploita classifier combination method to improve the performance. Extensive experimental results on theORL face database and the authors'' database (the ICT-JDL database) including totally 1,750 facialimages of 350 individuals demonstrate that the proposed technique, compared with traditionaleigenface method and some well-known traditional algorithms, is a significantly more effective androbust approach for face recognition. This paper presents a new technique of unified probabilistic models for facerecognition from only one single example image per person. The unified models, trained on anobtained training set with multiple samples per person, are used to recognize facial images fromanother disjoint database with a single sample per person. Variations between facial images aremodeled as two unified probabilistic models: within-class variations and between-class variations.Gaussian Mixture Models are used to approximate the distributions of the two variations and exploita classifier combination method to improve the performance. Extensive experimental results on theORL face database and the authors'' database (the ICT-JDL database) including totally 1,750 facialimages of 350 individuals demonstrate that the proposed technique, compared with traditionaleigenface method and some well-known traditional algorithms, is a significantly more effective androbust approach for face recognition.
出处 《Journal of Computer Science & Technology》 SCIE EI CSCD 2004年第3期383-392,共10页 计算机科学技术学报(英文版)
基金 国家自然科学基金,国家高技术研究发展计划(863计划),四川成都宜城网络公司资助项目
关键词 pattern recognition face recognition gaussian mixture model classifiercombination unified probabilistic model pattern recognition face recognition gaussian mixture model classifiercombination unified probabilistic model
  • 相关文献

参考文献4

二级参考文献9

  • 1熊志勇.人脸图像识别系统研究:博士学位论文[M].北京:中国科学院计算技术研究所,1999..
  • 2熊志勇 刘翼光 等.平面旋转的人脸图像识别.1999中国智能自动化学术会议论文集[M].重庆,1999.605-610.
  • 3Zhang J,IEEE Proc,1997年,85卷,9期,1422页
  • 4Chen C H,Handbook of Pattern Recognition and Computer Vision(第2版),1997年
  • 5Gutta S,Proc of the Int Workshop on Automatic Face and Gesture Recognition,1995年,227页
  • 6Xiong Zhiyong,Proc 1999 China Intelligent Automation Conference,1999年,605页
  • 7熊志勇,博士学位论文,1999年
  • 8郭跃飞,姜志华,杨静宇,邬永革,黄修武.一种新的代数特征抽取方法及人脸识别[J].南京理工大学学报,1997,21(5):387-390. 被引量:7
  • 9熊志勇,沈理.基于本征特征的弹性模板匹配法[J].计算机研究与发展,1999,36(7):876-881. 被引量:4

共引文献45

同被引文献34

引证文献4

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部