期刊文献+

基于SVM的小波图像去噪 被引量:4

Wavelet Image Denosing Based on Support Vector Machines
下载PDF
导出
摘要 在小波分析的基础上,运用支持向量机(SVM)方法来对噪声和非噪声数据进行分类。首先,把一带有噪声的信号进行多尺度小波分解;然后通过试验检测出小波分解系数中部分噪声信号和非噪声信号,得到样本数据来训练SVM;最后对所有的小波系数用训练后的SVM来进行分类得到非噪声信号,并且对这部分非噪声信号进行小波重构即达到了去噪的目的。 Noised and not noised signal data are identified using SVM method on the basis of wavelet transform. Firstly, noised signal data are decomposed by multilevel transform; Secondly, train some noised and not noised data of by testing; Finally, all coefficients are classed by SVM and obtains the not noised signal data. Reconstructed signal is obtained by using the inverse wavelet transform for not noised signal coefficients.
出处 《湖南科技学院学报》 2005年第5期157-159,共3页 Journal of Hunan University of Science and Engineering
基金 湖南省自然科学基金项目(03JJY3101) 湖南省教育厅科研项目(04C076)
关键词 图像去噪 支持向量机 多尺度小波变换 噪声信号 SVM 图像处理 image denoising support vector machines multilevel wavelet transform
  • 相关文献

参考文献5

  • 1胡昌华 张军波 夏军 等.基于MATLAB的系统分析与设计[M].陕西:西安电子科技大学出版社,1999.1-22.
  • 2Donoho DL, De-noising by soft-thresholding[J]. IEEE Trans. Inform. Theory, 1995, 41(5):613-627.
  • 3Rafael C.Gonzalez, Richard E. Woods. Digital Image Processing Second Edition[M]. BEIJING: Publishing House of Electronics Industry, 2004.
  • 4Starck JL, Candes EJ, Donoho DL. The curvelet transform for image denosing. IEEE Trans.Image Processing, 2002, 6:670-684.
  • 5王艳妮,陈龙斌,王卫宏,胡包钢.一种基于语义的图像数据库分类系统[J].计算机应用研究,2004,21(4):256-260. 被引量:5

二级参考文献18

  • 1M Stricker,M Orengo. Similarity of Color Images [ C]. Storage and Retrieval for Image and Video Databases SPIE,1995. 381-392.
  • 2A Vailaya, A K Jain, H J Zhang. On Image Classification:City Image vs. Landscapes [ J ]. Pattern Recognition, 1998,31 ( 12 ) : 1921 - 1936.
  • 3Y Li, L G Shapiro. Coasistent Line Clusters for Building Recognition in CBIR [ C]. International Conference on Pattern Recongnition,2002.
  • 4O Chapelle, P Haffner, V Vapnik. SVMs for Histogram-based Image Classification [ J ]. IEEE Trans. on Neural Networks, 1999,10 (5) :1055-1065.
  • 5M Szummer, R W Picard. Indoor-Outdoor Image Classification [ C ].IEEE Int. Workshop on Content-based Access of Image and Video Databases, 1998.
  • 6J Canny. A Computational Approach to Edge Detection [ J ]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1986,8 (6):679 - 698.
  • 7A Vailaya,A K Jain. Reject Option for VQ-based Bayesian Classification [ C ]. Prec. 15th International Conference on Pattern Recognition, 2000.
  • 8V Vapnik. The Nature of Statistical Learning Theory[ M]. New York:Springer- Verlag, 1995.
  • 9T Joachims. Making Large-scale SVM Learning Practical [ M ]. BSchollkopf, C Burges,A Smpla. Advances in Kemell Methods-Support Vector Learning. MIT Press, 1999.
  • 10H-H Yu, W Wolf. Scenic Classification Methods for Image and Video Databases [C]. Proc. SPIE,Digital linage Storage and Arehiving Systems, 1995. 363-371.

共引文献17

同被引文献17

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部