期刊文献+

区间数据典型相关分析技术及其在股市分析中的应用 被引量:3

The Canonical Correlation Analysis of Interval Data and Its Application in the Stock Market
原文传递
导出
摘要  采用一种针对大规模复杂数据的分析技术——符号数据分析方法(SymbolicDataAnalysis简称SDA),以中信证券风格指数作为研究对象,对2002年中国股票市场的财务指标与市场表现进行典型相关分析.研究结果表明,中国股市财务状况与市场表现相关性明显,上市公司的收益状况、偿债能力、资金管理能力及价值/成长因素决定股票的运行状况,不同风格股票在财务-市场关系方面差异性显著,行业特征明显.通过分析可以看到,运用符号数据对中国股市运行特征进行的分析结论与客观现实非常吻合,从而证明使用符号数据的典型相关分析技术对大规模多维动态数据系统进行统计分析是十分有效的. A kind of advanced complicated data analysis technology -Symbolic Data Analysis (SDA)-has been used in this paper, regarding style indices of Chinese international trust & investment company (CITIC) as the research object, and the relationship between financial statement and market behavior in Chinese stock market is analyzed by using canonical correlation analysis method. The research result indicates that the relationship between financial statement and market behaviour in Chinese stock is significantly dependent, the status quo of yield , the ability to pay its debt, the capital management ability and the factor of value/growing-ability determine the behavior of stock., and behavior characteristics differ remarkably in different style indices and in different industries. The computational analysis has showed that, by the method of Symbolic Data Analysis, the research result is very consistent with the realistic characteristics of Chinese stock market, which proves that it is very effective to simplify the multidimensional dynamic data system with the help of SDA method.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2005年第1期128-133,共6页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70041034) 国家杰出青年科学基金(70125003)
关键词 符号数据分析(SDA) 典型相关分析 股票市场 风格指数 symbolic data analysis(SDA) canonical correlation analysis stock market style indices
  • 相关文献

参考文献14

  • 1Diday E. From data to knowledge: Probabilistic objects for a symbolic data analysis[A]. In: DIMACS Series in Discrete Mathematics and Theoretical Computer Science[C], 1995.
  • 2Gettle-Summa M. Factorial Axis Interpretation by Symbolic Objects. Analyze des connaissances, apprentissage, raisonnement[A]. LISECEREMADE, University Paris IX-Dauphine[C],1992.53-64.
  • 3Belson W A. Matching and prediction on the principal of biological classification[J]. Applied Statistics, 1995,8: 65-75.
  • 4时光 罗晓芹.中国证券市场概述[M].成都:西南财经大学出版社,2000..
  • 5Batagelj V, Bren M. Comparing resemblance measures[J]. Journal of Classification,1995, 12:73-90.
  • 6Godin R, Missaoui R. An incremental concept formation approach for learing from databases[J]. Theoretical Computer Science 1994,133:387-419.
  • 7Giri N C. Multivariate Statistical Analysis[M]. Marcel Dekker, New York, 1996.
  • 8Gigout E. Graphical interpretation of symbolic objects resulting from data mining[A]. KESDA-98. Eurostat[C], Luxembourg, 1996.
  • 9Hans-Hermann Bock,Edwin Diday. Analysis of Symbolic Data[M]. Published by Country Science, 1999.
  • 10中国证券监督管理委员会.中国证券期货统计年鉴[M].北京:中国财政经济出版社,.1993-2000.

同被引文献40

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部