期刊文献+

基于整车配送的多仓库开路VRPTW问题的研究与实现 被引量:5

Research on Multiple Depots Open-path VRPTW Based on th e Whole Vehicle Delivery and Its Implementation
下载PDF
导出
摘要 以整车销售物流为背景,探讨多仓库带时窗约束的车辆路线安排问题的解决方法.提出了更为复杂的基于现实的细节性要求的多配送中心开路VRPTW问题模型,并将遗传算法产生部分解和评估完整解的优化解决方法和涌现交叉算子MX1引入到带时窗的多仓库VRP问题优化中,实现了快速全局优化.提出的开路混合配送方法有利于提高车辆满载率,降低回程空载率.同时实现了运输资源的优化配置,提高车辆利用率.计算机仿真实验证明了算法的可行性. A more complicated mathematical model based on pr ac tical details for open-path multiple depot capacitated vehicle routing problem with time window (MDCVRPTW) is presented against whole vehicle sale logistics. T o achieve the rapid global optimization, an improved genetic algorithm (IGA) whi ch generates partial solutions and evaluates the fully expanded solutions and me rge crossover operator MX1 are first introduced into the solution of MDCVRPTW. B esides, a mixed open-path delivery method is proposed to improve full load rati o and reduce empty return load ratio. Computer simulation shows the feasiblity o f the proposed algorithm.
出处 《信息与控制》 CSCD 北大核心 2005年第3期350-355,共6页 Information and Control
关键词 多仓库带时窗约束的开路车辆路线问题 整车配送 预处理 返程空载率 遗传算法 multiple depot capacitated vehicle routing problem with time window whole vehicle delivery preprocessing empty return load ratio genetic algorithm
  • 相关文献

参考文献9

  • 1Krajcar S. Mgorithms for Interactive Optimal Planning of Distribution Networks [ D ]. Ann Arbor: University of Aagre Press, 1988.
  • 2Filipec M, Skrlec D, Krajear S. Darwin meets computers: new approach to multiple depot capacitated vehicle routing problem[A]. Proceedings of of the International Conference on Systems,Man and ,Cybernetics [ C ]. Orlando, USA: Pergamon Press,1997.421 - 426.
  • 3Filipec M, Skrlec D, Krajcar S. Genetic algorithm approach for multiple depot capacitated vehicle routing problem solving with heuristic improvements built-in [ J ]. International Journal of Modeling and Simulation, 2000,20(4) :320 -328.
  • 4Skok M, Skrlcc D, Krajcar S. The genetic algorithm method for multiple depot capacitated vehicle routing problem solving [A].The Fourth International Conference on Knowledge-based Intelligent Engineering Systems & Allied Technologies [C]. Brighton,UK:UK Press,2000. 520 -526.
  • 5Powell M J D. Variable metric methods for constrained optimization [ J]. Mathematical Programming; the State of the Art, 1983,29(29) :288 -311.
  • 6Sulhil J L, Xiang Y Y, Yuan Z Y. Multiple vehicle routing with time windows using genetic algorithms [ A ]. IEEE Congress on Evolutionary Computation [ C]. Piscataway, NJ, USA: IEEE,1999. 1804-1808.
  • 7Syswerda G. Schedule Optimization Using Genetic Algorithms[Z]. New York : Van Nostrand Reinhold, 1991. 332 - 349.
  • 8Whifley D. The genitor algorithm AND selection pressure: why rank-based allocation of reproductive trials is best [ A]. Proceedings of the Third International Conference on Genetic Algorithms and Their Application [ C ]. Morgan , USA : Morgan Kaufmann Publishers, 1989. 116 - 121.
  • 9Haghaui A L, Jung S A. Dynamic vehicle routing problem with time-dependent travel times [J]. Computers & Operations Re-search, 2004,31 (4) :653 -681.

同被引文献13

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部