期刊文献+

基于多神经网络模型的酯化反应软测量 被引量:7

Soft Sensor of Polyester Reaction Based on Multiple Neural Network Model
下载PDF
导出
摘要 对模糊C-均值聚类算法加以改进,将系统输入数据进行模糊划分,分成具有几个不同聚类中心的子集;继而引入到多模型建模过程中,针对每个子集建立相应的径向基函数(RBF)网络模型。而全局模型则由各个子模型的输出加权组合。最后通过对聚合釜反应器软测量建模的研究,表明该方法具有拟合精度高和泛化能力强的特点,验证了此多模型建模方法的有效性和快速性。 Based on fuzzy C-means clustering (FCM) algorithm, a modified clustering algorithm is proposed. Using this algorithm, the input data set of a system can be quickly divided into several fuzzy clusters with distinct centers. Then, the multiple neural network modeling is introduced to the determination process. Corresponding to different clusters, each subset can be trained by radial basic function networks (RBF), and the global model is a certain combination of these multiple models. Finally, the performance of this method is evaluated by a practical case of the soft sensor of polyester reactor, which demonstrates that it has a higher approaching precision and a stronger generalization capacity. The obtained results prove its accuracy and validity.
出处 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第2期208-211,226,共5页 Journal of East China University of Science and Technology
基金 国家863资助项目(2002AA412120)
关键词 多模型 模糊C-均值聚类(FCM) 神经网络 软测量 multi-model fuzzy C-means clustering (FCM) neural network soft senor
  • 相关文献

参考文献12

  • 1高新波,谢维信.模糊聚类理论发展及应用的研究进展[J].科学通报,1999,44(21):2241-2251. 被引量:100
  • 2沈瀛坪,赵玲,戴迎春,朱中南.聚酯酯化反应过程研究方法[J].聚酯工业,1998,11(2):7-13. 被引量:9
  • 3张永玲.国外PET制造过程工程研究进展[J].聚酯工业,1993,6(1):31-49. 被引量:3
  • 4李柠,李少远,席裕庚.利用模糊满意聚类建立pH中和过程模型[J].控制与决策,2002,17(2):143-147. 被引量:14
  • 5拉皮德斯L 阿蒙特森NR.化学反应器理论[M].北京:石油工业出版社,1984..
  • 6Ray W H. On the mathematical modeling of polymerization reactors [J]. Macromol Sci Rev Macromol Chem, 1972, (8):1-56.
  • 7Ray W H. Dynamic behavior of polymerization reactors:Modeling of chemical reaction systems [A]. Proceeding of International Workshop [C]. Germany: Heidelberg, 1980.237-254.
  • 8Ray W H. Polymerization reactor control[J]. IEEE Control System Magazine, 1986, 8: 3-8.
  • 9Bates J M, Granger C W J. The combination of forecasts[J].Operations Research Quarterly, 1969, 20: 319-325.
  • 10Roubos J A, Krabben P, Sentens M. Hybrid model development for fed-batch bioproeesses: Combining physical equations with the metabolic network and black-box kineties[D].Delft:Delft University of Technology, 1999.

二级参考文献31

  • 1[1]Buchholt F, Kummel M. Self-tuning control of a pH-neutralization process[J]. Automatica,1979,15(6):665-671.
  • 2[2]Pajunen G A. Comparison of linear and nonlinear adaptive control of a pH-process[J]. IEEE Control Systems Magazine,1987,7(1):39-44.
  • 3[3]Karr C L, Gentry E J.Fuzzy control of pH using gene-tic algorithms[J]. IEEE Trans on Fuzzy Systems,1993,1(1):46-53.
  • 4[4]Bhat N V, Minderman P A, Jr Macvoy T, et al. Modeling chemical process systems via neural computation[J]. IEEE Control Systems Magazine,1990,10(3):24-30.
  • 5[5]Nie J H, Loh A P, Hang C C. Modeling pH neutralization processes using fuzzy-neural approaches[J]. Fuzzy Sets and Systems,1996,78(1):5-22.
  • 6[6]Gustafson D, Kessel W C. Fuzzy clustering with a fuzzy covariance matrix[A]. Proc of IEEE CDC[C]. San Diego,1979.761-766.
  • 7[7]Murray S R, Johansen T A. Multiple model approaches to modeling and control[M]. London: Taylor and Francis,1997.
  • 8[8]Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Trans on SMC,1985,15(1):116-132.
  • 9高新波,IEEE ISPACS’98,1998年,387页
  • 10Yang M S,Fuzzy Sets Systems,1997年,91卷,3期,319页

共引文献121

同被引文献64

引证文献7

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部